The spectrum of the Laplace operator on connected compact simple Lie groups of rank four.~II
Matematičeskie trudy, Tome 22 (2019) no. 2, pp. 34-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, we explicitly compute the spectrum of the Laplace operator on smooth real-valued and complex-valued functions on connected compact simple Lie groups of rank four with a bi-invariant Riemannian metrics that correspond to the root systems $A_4$ and $F_4$.
@article{MT_2019_22_2_a2,
     author = {I. A. Zubareva},
     title = {The spectrum of the {Laplace} operator on connected compact simple {Lie} groups of rank {four.~II}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {34--53},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2019_22_2_a2/}
}
TY  - JOUR
AU  - I. A. Zubareva
TI  - The spectrum of the Laplace operator on connected compact simple Lie groups of rank four.~II
JO  - Matematičeskie trudy
PY  - 2019
SP  - 34
EP  - 53
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2019_22_2_a2/
LA  - ru
ID  - MT_2019_22_2_a2
ER  - 
%0 Journal Article
%A I. A. Zubareva
%T The spectrum of the Laplace operator on connected compact simple Lie groups of rank four.~II
%J Matematičeskie trudy
%D 2019
%P 34-53
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2019_22_2_a2/
%G ru
%F MT_2019_22_2_a2
I. A. Zubareva. The spectrum of the Laplace operator on connected compact simple Lie groups of rank four.~II. Matematičeskie trudy, Tome 22 (2019) no. 2, pp. 34-53. http://geodesic.mathdoc.fr/item/MT_2019_22_2_a2/

[1] Berestovskii V. N., Zubareva I. A., Svirkin V. M., “Spektr operatora Laplasa na svyaznykh kompaktnykh prostykh gruppakh Li ranga tri”, Matem. tr., 19:1 (2016), 3–45 | Zbl

[2] Berestovskii V. N., Svirkin V. M., “Operator Laplasa na odnorodnykh normalnykh rimanovykh mnogoobraziyakh”, Matem. tr., 12:2 (2009), 3–40 | MR

[3] Berestovskii V. N., Svirkin V. M., “Spektr operatora Laplasa na kompaktnykh odnosvyaznykh prostykh gruppakh Li ranga dva”, Fiziko-matematicheskie nauki, Uchen. zap. Kazan. gos. un-ta. Ser. Fiz.-matem. nauki, 151, no. 4, 2009, 15–35 | Zbl

[4] Burbaki N., Gruppy i algebry Li, Gl. IV–VI, Mir, M., 1972 | MR

[5] Zubareva I. A., “Spektr operatora Laplasa na nekotorykh svyaznykh kompaktnykh prostykh gruppakh Li ranga chetyre”, Matem. tr., 19:2 (2016), 42–85 | MR | Zbl

[6] Svirkin V. M., “Spektr operatora Laplasa svyaznykh kompaktnykh prostykh grupp Li ranga odin i dva”, Fiziko-matematicheskie nauki, Uchen. zap. Kazan. gos. un-ta. Ser. Fiz.-matem. nauki, 152, no. 1, 2010, 219–234 | MR | Zbl