Asymptotic behavior of the mean sojourn time for a random walk to be in a domain of large deviations
Matematičeskie trudy, Tome 22 (2019) no. 2, pp. 3-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotic behavior of the mean of sojourn time for a homogeneous random walk defined on $[0,n]$ to be above a receding curvilinear boundary in a domain of large deviations under Cramér's condition on the jump distribution.
@article{MT_2019_22_2_a0,
     author = {I. S. Borisov and E. I. Shefer},
     title = {Asymptotic behavior of the mean sojourn time for a random walk to be in a domain of large deviations},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2019_22_2_a0/}
}
TY  - JOUR
AU  - I. S. Borisov
AU  - E. I. Shefer
TI  - Asymptotic behavior of the mean sojourn time for a random walk to be in a domain of large deviations
JO  - Matematičeskie trudy
PY  - 2019
SP  - 3
EP  - 20
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2019_22_2_a0/
LA  - ru
ID  - MT_2019_22_2_a0
ER  - 
%0 Journal Article
%A I. S. Borisov
%A E. I. Shefer
%T Asymptotic behavior of the mean sojourn time for a random walk to be in a domain of large deviations
%J Matematičeskie trudy
%D 2019
%P 3-20
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2019_22_2_a0/
%G ru
%F MT_2019_22_2_a0
I. S. Borisov; E. I. Shefer. Asymptotic behavior of the mean sojourn time for a random walk to be in a domain of large deviations. Matematičeskie trudy, Tome 22 (2019) no. 2, pp. 3-20. http://geodesic.mathdoc.fr/item/MT_2019_22_2_a0/

[1] Borisov I. S., Shefer E. I., “Asimptotika srednego vremeni prebyvaniya traektorii sluchainogo bluzhdaniya vyshe udalyayuscheisya krivolineinoi granitsy”, Sib. zhurn. chist. i prikl. matem., 17:4 (2017), 18–27 | Zbl

[2] Borovkov A. A., Teoriya veroyatnostei, Uchebnoe posobie, 5-e izd., Knizhnyi dom «Librokom», M., 2009

[3] Borovkov A. A., Borovkov K. A., Asimptoticheskii analiz sluchainykh bluzhdanii, v. 1, Medlenno ubyvayuschie raspredeleniya skachkov, Fizmatlit, M., 2008

[4] Lotov V. I., Tarasenko A. C., “Ob asimptotike srednego vremeni prebyvaniya sluchainogo bluzhdaniya na poluosi”, Izv. RAN. Ser. matem., 79:3 (2015), 23–40 | DOI | MR | Zbl