Lie type Jordan algebras
Matematičeskie trudy, Tome 22 (2019) no. 1, pp. 127-177.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the variety $\mathcal{V}_J$ of Jordan algebras defined by the identities $x^2yx\equiv 0$ and $(x_1y_1)(x_2y_2)(x_3y_3)\equiv 0$. We suggest a method for constructing an algebra in $\mathcal{V}_J$ from an arbitrary Lie superalgebra. For certain subvarieties, we completely describe their identities and sequences of cocharacters. As a corollary, we obtain the first example of a variety of Jordan algebras with fractional exponential growth.
@article{MT_2019_22_1_a5,
     author = {A. V. Popov},
     title = {Lie type {Jordan} algebras},
     journal = {Matemati\v{c}eskie trudy},
     pages = {127--177},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2019_22_1_a5/}
}
TY  - JOUR
AU  - A. V. Popov
TI  - Lie type Jordan algebras
JO  - Matematičeskie trudy
PY  - 2019
SP  - 127
EP  - 177
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2019_22_1_a5/
LA  - ru
ID  - MT_2019_22_1_a5
ER  - 
%0 Journal Article
%A A. V. Popov
%T Lie type Jordan algebras
%J Matematičeskie trudy
%D 2019
%P 127-177
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2019_22_1_a5/
%G ru
%F MT_2019_22_1_a5
A. V. Popov. Lie type Jordan algebras. Matematičeskie trudy, Tome 22 (2019) no. 1, pp. 127-177. http://geodesic.mathdoc.fr/item/MT_2019_22_1_a5/

[1] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR

[2] Volichenko I. B., “Mnogoobrazie algebr Li s tozhdestvom $\big[[X1;X2;X3]; [X4;X5;X6]\big]=0$ nad polem kharakteristiki nul”, Sib. matem. zhurn., 25:3 (1984), 40–54 | MR | Zbl

[3] Zhevlakov K. A., Slinko A. M., Shestakov I. P., Shirshov A. I., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR

[4] Zelmanov E. I., “Ob engelevykh algebrakh Li”, Sib. matem. zhurn., 29:5 (1988), 112–117 | MR | Zbl

[5] Kantor I. Ya., “Iordanova i lieva superalgebry, opredelyaemye algebroi Puassona”, Algebra i analiz, 2-ya sibirskaya shkola (Tomsk, 1989), 55–80 | Zbl

[6] Kemer A. R., “Shpekhtovost $T$-idealov so stepennym rostom korazmernostei”, Sib. matem. zhurn., 19:1 (1978), 54–69 | MR | Zbl

[7] Medvedev Yu. A., “O nil-elementakh svobodnoi iordanovoi algebry”, Sib. matem. zhurn., 26:2 (1985), 140–148 | MR | Zbl

[8] Mischenko S. P., “O mnogoobraziyakh algebr Li promezhutochnogo rosta”, Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, 126:2 (1987), 42–45

[9] Mischenko S. P., Popov A. V., “Mnogoobrazie iordanovykh algebr, opredelyaemoe tozhdestvom $(xy)(zt)\equiv0$, imeet pochti polinomialnyi rost”, Matem. zametki, 87:6 (2010), 878–885 | DOI

[10] Mischenko S. S., “Novyi primer mnogoobraziya algebr Li s drobnoi eksponentoi”, Vestn. MGU, Ser. Matem. mekh., 66:6 (2011), 44–47 | MR

[11] Petrogradskii V. M., “Rost polinilpotentnykh mnogoobrazii algebr Li i bystro rastuschie tselye funktsii”, Matem. sb., 188:6 (1997), 119–138 | DOI | MR | Zbl

[12] Sverchkov S. R., “O razreshimykh indeksa 2 iordanovykh algebrakh”, Matem. sb., 121(163):1(5) (1983), 40–47 | MR | Zbl

[13] Skosyrskii V. G., “Razreshimost i silnaya razreshimost iordanovykh algebr”, Sib. matem. zhurn., 30:2 (1989), 167–171 | MR

[14] Shestakov I. P., “Kvantovaniya superalgebr Puassona i spetsialnost iordanovykh superalgebr puassonova tipa”, Algebra i logika, 32:5 (1993), 571–584 | MR | Zbl

[15] Shestakov I. P., “Alternativnye i iordanovy superalgebry”, Algebra, geometriya, analiz i matematicheskaya fizika, 10-ya sibirskaya shkola, Izd-vo In-ta matematiki, Novosibirsk, 1997, 157–169 | Zbl

[16] Drensky V., “On the identities of the three-dimensional simple Jordan algebra”, Annuaire de l'Univ. de Sofia, Fac. de Math. et Mecan., 1:78 (1984), 53–67 | MR

[17] Drensky V., “Polynomial identities for the Jordan algebra of a symmetric bilinear form”, J. Algebra, 108:1 (1987), 66–87 | DOI | MR | Zbl

[18] Drensky V., Free Algebras and PI-Algebras, Graduate Course in Algebra, Springer-Verlag Singapore, Singapore, 2000 | MR | Zbl

[19] Drensky V., Rashkova T., “Varieties of metabelian Jordan algebras”, Serdica, 15:4 (1989), 293–301 | MR | Zbl

[20] Fulton W., Young Tableaux. With Applications to Representation Theory and Geometry, London Math. Soc. Student Texts, 35, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[21] Giambruno A., Zaicev M. V., “Exponential codimension growth of PI-algebras: an exact estimate”, Adv. Math., 142:2 (1999), 221–243 | DOI | MR | Zbl

[22] Giambruno A., Zaicev M., Polynomial Identities and Asymptotic Methods, Mathematical Surveys and Monographs, 122, Amer. Math. Soc., Providence, RI, 2005 | DOI | MR | Zbl

[23] Giambruno A., Zelmanov E., “On growth of codimensions of Jordan algebras”, Groups, Algebras and Applications, XVIII Latin American Algebra Colloquium (San Pedro, Brazil, 2009), Contemporary Mathematics, 537, Amer. Math. Soc., Providence, RI, 2011, 205–210 | DOI | MR | Zbl

[24] James G. D., The Representation Theory of the Symmetric Groups, Lecture Notes in Math., 682, Springer-Verlag, New York, 1978 | DOI | MR | Zbl

[25] Malyusheva O. A., Mishchenko S. P., Verevkin A. B., “Series of varieties of Lie algebras of different fractional exponents”, C. R. Acad. Bulg. Sci., 66:3 (2013), 321–330 | MR | Zbl

[26] McCrimmon K., A Taste of Jordan Algebras, Springer-Verlag, New York, 2004 | MR | Zbl

[27] Mishchenko S. P., Zaicev M. V., “An example of a variety of Lie algebras with a fractional exponent”, J. Math. Sci. (New York), 93:6 (1999), 977–982 | DOI | MR | Zbl

[28] Regev A., “Existence of identities in $A\otimes B$”, Isr. J. Math., 11:2 (1972), 131–152 | DOI | MR | Zbl