Lie type Jordan algebras
Matematičeskie trudy, Tome 22 (2019) no. 1, pp. 127-177

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the variety $\mathcal{V}_J$ of Jordan algebras defined by the identities $x^2yx\equiv 0$ and $(x_1y_1)(x_2y_2)(x_3y_3)\equiv 0$. We suggest a method for constructing an algebra in $\mathcal{V}_J$ from an arbitrary Lie superalgebra. For certain subvarieties, we completely describe their identities and sequences of cocharacters. As a corollary, we obtain the first example of a variety of Jordan algebras with fractional exponential growth.
@article{MT_2019_22_1_a5,
     author = {A. V. Popov},
     title = {Lie type {Jordan} algebras},
     journal = {Matemati\v{c}eskie trudy},
     pages = {127--177},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2019_22_1_a5/}
}
TY  - JOUR
AU  - A. V. Popov
TI  - Lie type Jordan algebras
JO  - Matematičeskie trudy
PY  - 2019
SP  - 127
EP  - 177
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2019_22_1_a5/
LA  - ru
ID  - MT_2019_22_1_a5
ER  - 
%0 Journal Article
%A A. V. Popov
%T Lie type Jordan algebras
%J Matematičeskie trudy
%D 2019
%P 127-177
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2019_22_1_a5/
%G ru
%F MT_2019_22_1_a5
A. V. Popov. Lie type Jordan algebras. Matematičeskie trudy, Tome 22 (2019) no. 1, pp. 127-177. http://geodesic.mathdoc.fr/item/MT_2019_22_1_a5/