A~triple of~infinite iterates of~the~functor of~positively homogeneous functionals
Matematičeskie trudy, Tome 22 (2019) no. 1, pp. 101-118

Voir la notice de l'article provenant de la source Math-Net.Ru

The present article is devoted to the study of the space $OH(X)$ of all weakly additive order-preserving normalized positively homogeneous functionals on a metric compactum $X$. We prove the uniform metrizability of the functor $OH$ by means of the Kantorovich–Rubinshteĭn metric. We also show that the functor $OH_+$ is perfectly metrizable, where $$ OH_+(X)=\Big\{\mu\in OH(X): \big\vert\mu(\varphi) \big\vert\le\mu\big(|\varphi| \big), \varphi\in C(X) \Big\}. $$ Under natural assumptions on $X$, we show that the triple $$ \big(\mathcal{F}^\omega(X),\mathcal{F}^{++}(X),\mathcal{F}^+(X) \big) $$ is homeomorphic to $(Q,s,\mathrm{rint}\, Q)$, where $\mathcal{F}$ is a convex seminormal semimonadic subfunctor of $OH_+$.
@article{MT_2019_22_1_a3,
     author = {G. F. Djabbarov},
     title = {A~triple of~infinite iterates of~the~functor of~positively homogeneous functionals},
     journal = {Matemati\v{c}eskie trudy},
     pages = {101--118},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2019_22_1_a3/}
}
TY  - JOUR
AU  - G. F. Djabbarov
TI  - A~triple of~infinite iterates of~the~functor of~positively homogeneous functionals
JO  - Matematičeskie trudy
PY  - 2019
SP  - 101
EP  - 118
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2019_22_1_a3/
LA  - ru
ID  - MT_2019_22_1_a3
ER  - 
%0 Journal Article
%A G. F. Djabbarov
%T A~triple of~infinite iterates of~the~functor of~positively homogeneous functionals
%J Matematičeskie trudy
%D 2019
%P 101-118
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2019_22_1_a3/
%G ru
%F MT_2019_22_1_a3
G. F. Djabbarov. A~triple of~infinite iterates of~the~functor of~positively homogeneous functionals. Matematičeskie trudy, Tome 22 (2019) no. 1, pp. 101-118. http://geodesic.mathdoc.fr/item/MT_2019_22_1_a3/