Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2018_21_2_a7, author = {V. Z. Grines and E. Ya. Gurevich and E. V. Zhuzhoma and V. S. Medvedev}, title = {On topology of manifolds admitting a gradient-like flow with a prescribed non-wandering set}, journal = {Matemati\v{c}eskie trudy}, pages = {163--180}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2018_21_2_a7/} }
TY - JOUR AU - V. Z. Grines AU - E. Ya. Gurevich AU - E. V. Zhuzhoma AU - V. S. Medvedev TI - On topology of manifolds admitting a gradient-like flow with a prescribed non-wandering set JO - Matematičeskie trudy PY - 2018 SP - 163 EP - 180 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2018_21_2_a7/ LA - ru ID - MT_2018_21_2_a7 ER -
%0 Journal Article %A V. Z. Grines %A E. Ya. Gurevich %A E. V. Zhuzhoma %A V. S. Medvedev %T On topology of manifolds admitting a gradient-like flow with a prescribed non-wandering set %J Matematičeskie trudy %D 2018 %P 163-180 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MT_2018_21_2_a7/ %G ru %F MT_2018_21_2_a7
V. Z. Grines; E. Ya. Gurevich; E. V. Zhuzhoma; V. S. Medvedev. On topology of manifolds admitting a gradient-like flow with a prescribed non-wandering set. Matematičeskie trudy, Tome 21 (2018) no. 2, pp. 163-180. http://geodesic.mathdoc.fr/item/MT_2018_21_2_a7/
[1] Andronov A. A., Pontryagin L. S., “Grubye sistemy”, DAN SSSR, 14:5 (1937), 247–251 | MR
[2] Grines V. Z., Zhuzhoma E. V., Medvedev V. S., “Novye sootnosheniya dlya sistem Morsa — Smeila s trivialno vlozhennymi odnomernymi separatrisami”, Matem. sb., 194:7 (2003), 25–56 | DOI | MR | Zbl
[3] Grines V. Z., Zhuzhoma E. V., Medvedev V. S., “O strukture nesuschego mnogoobraziya dlya sistem Morsa — Smeila bez geteroklinicheskikh peresechenii”, Tr. MIRAN, 297, 2017, 201–210 | Zbl
[4] Keldysh L. V., “Topologicheskie vlozheniya v evklidovo prostranstvo”, Tr. MIAN SSSR, 81, 1966, 3–184
[5] Milnor Dzh., Uolles A., Differentsialnaya topologiya. Nachalnyi kurs, Mir, M., 1972 | MR
[6] Khirsh M., Differentsialnaya topologiya, 1979, M.
[7] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, v. 1, In-t kompyut. issled., M.–Izhevsk, 2004
[8] Bonatti C., Grines V., Medvedev V., Pecou E., “Three-Dimensional manifolds admitting Morse–Smale diffeomorphisms without heteroclinic curves”, Topology Appl., 117:3 (2002), 335–344 | DOI | MR | Zbl
[9] Daverman R. J., Venema G. A., Embeddings in Manifolds, Graduate Studies in Mathematics, 106, Amer. Math. Soc., Providence, RI, 2009 | DOI | MR | Zbl
[10] Grines V. Z., Gurevich E. A., Pochinka O. V., “Topological classification of Morse–Smale diffeomorphisms without heteroclinic intersection”, J. Math. Sci., 208:1 (2015), 81–90 | DOI | MR | Zbl
[11] Kervaire M. A., Milnor J. W., “Groups of homotopy spheres. I”, Ann. Math., 2:77 (1963), 504–537 | DOI | MR | Zbl
[12] Lee J., Introduction to Smooth Manifolds, Graduate Texts in Mathematics, 218, Springer-Verlag, New York, 2012 | DOI | MR
[13] Matsumoto Y., An Introduction to Morse Theory, Translations of Mathematical Monographs, 208, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[14] Smale S., “Morse inequalities for a dynamical system”, Bull. Amer. Math. Soc., 66 (1960), 43–49 | DOI | MR | Zbl
[15] Smale S., “On gradient dynamical systems”, Ann. of Math. (2), 74:1 (1961), 199–206 | DOI | MR | Zbl
[16] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl
[17] Zhuzhoma E. V., Medvedev V. S., “Morse–Smale systems with few non-wandering points”, Topology Appl., 160:3 (2013), 498–507 | DOI | MR | Zbl