Exponential inequalities for the distributions of $V$-processes based on dependent observations
Matematičeskie trudy, Tome 21 (2018) no. 2, pp. 102-116
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, exponential inequalities are obtained for the distribution tail of the sup-norm of a $V$-processes with canonical kernel based on independent or weakly dependent observations.
@article{MT_2018_21_2_a3,
author = {I. S. Borisov and V. A. Zhechev},
title = {Exponential inequalities for the distributions of $V$-processes based on dependent observations},
journal = {Matemati\v{c}eskie trudy},
pages = {102--116},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2018_21_2_a3/}
}
TY - JOUR AU - I. S. Borisov AU - V. A. Zhechev TI - Exponential inequalities for the distributions of $V$-processes based on dependent observations JO - Matematičeskie trudy PY - 2018 SP - 102 EP - 116 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2018_21_2_a3/ LA - ru ID - MT_2018_21_2_a3 ER -
I. S. Borisov; V. A. Zhechev. Exponential inequalities for the distributions of $V$-processes based on dependent observations. Matematičeskie trudy, Tome 21 (2018) no. 2, pp. 102-116. http://geodesic.mathdoc.fr/item/MT_2018_21_2_a3/