Exponential inequalities for the distributions of $V$-processes based on dependent observations
Matematičeskie trudy, Tome 21 (2018) no. 2, pp. 102-116

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, exponential inequalities are obtained for the distribution tail of the sup-norm of a $V$-processes with canonical kernel based on independent or weakly dependent observations.
@article{MT_2018_21_2_a3,
     author = {I. S. Borisov and V. A. Zhechev},
     title = {Exponential inequalities for the distributions of $V$-processes based on dependent observations},
     journal = {Matemati\v{c}eskie trudy},
     pages = {102--116},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2018_21_2_a3/}
}
TY  - JOUR
AU  - I. S. Borisov
AU  - V. A. Zhechev
TI  - Exponential inequalities for the distributions of $V$-processes based on dependent observations
JO  - Matematičeskie trudy
PY  - 2018
SP  - 102
EP  - 116
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2018_21_2_a3/
LA  - ru
ID  - MT_2018_21_2_a3
ER  - 
%0 Journal Article
%A I. S. Borisov
%A V. A. Zhechev
%T Exponential inequalities for the distributions of $V$-processes based on dependent observations
%J Matematičeskie trudy
%D 2018
%P 102-116
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2018_21_2_a3/
%G ru
%F MT_2018_21_2_a3
I. S. Borisov; V. A. Zhechev. Exponential inequalities for the distributions of $V$-processes based on dependent observations. Matematičeskie trudy, Tome 21 (2018) no. 2, pp. 102-116. http://geodesic.mathdoc.fr/item/MT_2018_21_2_a3/