Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2018_21_2_a3, author = {I. S. Borisov and V. A. Zhechev}, title = {Exponential inequalities for the distributions of $V$-processes based on dependent observations}, journal = {Matemati\v{c}eskie trudy}, pages = {102--116}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2018_21_2_a3/} }
TY - JOUR AU - I. S. Borisov AU - V. A. Zhechev TI - Exponential inequalities for the distributions of $V$-processes based on dependent observations JO - Matematičeskie trudy PY - 2018 SP - 102 EP - 116 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2018_21_2_a3/ LA - ru ID - MT_2018_21_2_a3 ER -
I. S. Borisov; V. A. Zhechev. Exponential inequalities for the distributions of $V$-processes based on dependent observations. Matematičeskie trudy, Tome 21 (2018) no. 2, pp. 102-116. http://geodesic.mathdoc.fr/item/MT_2018_21_2_a3/
[1] Borisov I. S., “Approksimatsiya raspredelenii statistik Mizesa s mnogomernymi yadrami”, Sib. matem. zhurn., 32:4 (1991), 20–35 | MR
[2] Borisov I. S., Volodko N. V., “Ortogonalnye ryady i predelnye teoremy dlya kanonicheskikh $U$- i $V$-statistik ot statsionarno svyazannykh nablyudenii”, Matem. tr., 11:1 (2008), 25–48 | MR | Zbl
[3] Borisov I. S., Volodko N. V., “Eksponentsialnye neravenstva dlya raspredelenii $U$- i $V$-statistik ot zavisimykh nablyudenii”, Matem. tr., 11:2 (2008), 3–19 | Zbl
[4] Borisov I. S., Zhechev V. A., “Printsip invariantnosti dlya kanonicheskikh $U$- i $V$-statistik ot zavisimykh nablyudenii”, Matem. tr., 16:2 (2013), 28–44 | Zbl
[5] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972
[6] Ruzankin P. S., “Ob eksponentsialnykh neravenstvakh dlya kanonicheskikh $V$-statistik”, Sib. elektron. matem. izv., 11 (2014), 70–75 | MR | Zbl
[7] Borisov I. S., Volodko N. V., “A note on exponential inequalities for the distribution tails of canonical Von Mises' statistics of dependent observations”, Statist. Probab. Lett., 96 (2015), 287–291 | DOI | MR | Zbl
[8] Dedecker J., Prieur C., “New dependence coefficients. Examples and applications to statistics”, Probab. Theory Relat. Fields, 132:2 (2005), 203–236 | DOI | MR | Zbl
[9] Doukhan P., Mixing. Properties and Examples, Lecture Notes in Statistics, 85, Springer-Verlag, New York, 1994 | DOI | MR | Zbl
[10] Hoeffding W., “Probability inequalities for sums of bounded random variables”, J. Amer. Statist. Assoc., 18 (1963), 13–30 | DOI | MR