Exponential inequalities for the distributions of $V$-processes based on dependent observations
Matematičeskie trudy, Tome 21 (2018) no. 2, pp. 102-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, exponential inequalities are obtained for the distribution tail of the sup-norm of a $V$-processes with canonical kernel based on independent or weakly dependent observations.
@article{MT_2018_21_2_a3,
     author = {I. S. Borisov and V. A. Zhechev},
     title = {Exponential inequalities for the distributions of $V$-processes based on dependent observations},
     journal = {Matemati\v{c}eskie trudy},
     pages = {102--116},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2018_21_2_a3/}
}
TY  - JOUR
AU  - I. S. Borisov
AU  - V. A. Zhechev
TI  - Exponential inequalities for the distributions of $V$-processes based on dependent observations
JO  - Matematičeskie trudy
PY  - 2018
SP  - 102
EP  - 116
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2018_21_2_a3/
LA  - ru
ID  - MT_2018_21_2_a3
ER  - 
%0 Journal Article
%A I. S. Borisov
%A V. A. Zhechev
%T Exponential inequalities for the distributions of $V$-processes based on dependent observations
%J Matematičeskie trudy
%D 2018
%P 102-116
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2018_21_2_a3/
%G ru
%F MT_2018_21_2_a3
I. S. Borisov; V. A. Zhechev. Exponential inequalities for the distributions of $V$-processes based on dependent observations. Matematičeskie trudy, Tome 21 (2018) no. 2, pp. 102-116. http://geodesic.mathdoc.fr/item/MT_2018_21_2_a3/

[1] Borisov I. S., “Approksimatsiya raspredelenii statistik Mizesa s mnogomernymi yadrami”, Sib. matem. zhurn., 32:4 (1991), 20–35 | MR

[2] Borisov I. S., Volodko N. V., “Ortogonalnye ryady i predelnye teoremy dlya kanonicheskikh $U$- i $V$-statistik ot statsionarno svyazannykh nablyudenii”, Matem. tr., 11:1 (2008), 25–48 | MR | Zbl

[3] Borisov I. S., Volodko N. V., “Eksponentsialnye neravenstva dlya raspredelenii $U$- i $V$-statistik ot zavisimykh nablyudenii”, Matem. tr., 11:2 (2008), 3–19 | Zbl

[4] Borisov I. S., Zhechev V. A., “Printsip invariantnosti dlya kanonicheskikh $U$- i $V$-statistik ot zavisimykh nablyudenii”, Matem. tr., 16:2 (2013), 28–44 | Zbl

[5] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972

[6] Ruzankin P. S., “Ob eksponentsialnykh neravenstvakh dlya kanonicheskikh $V$-statistik”, Sib. elektron. matem. izv., 11 (2014), 70–75 | MR | Zbl

[7] Borisov I. S., Volodko N. V., “A note on exponential inequalities for the distribution tails of canonical Von Mises' statistics of dependent observations”, Statist. Probab. Lett., 96 (2015), 287–291 | DOI | MR | Zbl

[8] Dedecker J., Prieur C., “New dependence coefficients. Examples and applications to statistics”, Probab. Theory Relat. Fields, 132:2 (2005), 203–236 | DOI | MR | Zbl

[9] Doukhan P., Mixing. Properties and Examples, Lecture Notes in Statistics, 85, Springer-Verlag, New York, 1994 | DOI | MR | Zbl

[10] Hoeffding W., “Probability inequalities for sums of bounded random variables”, J. Amer. Statist. Assoc., 18 (1963), 13–30 | DOI | MR