Nonlocal boundary value problems for~Sobolev-type fractional equations and grid methods for~solving them
Matematičeskie trudy, Tome 21 (2018) no. 2, pp. 72-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider nonlocal boundary value problems for a Sobolev-type equation with variable coefficients with fractional Gerasimov–Caputo derivative. The main result of the article consists in proving a priori estimates for solutions to nonlocal boundary value problems both in differential and difference form obtained under the assumption of the existence of a solution $u(x,t)$ in a class of sufficiently smooth functions. These inequalities imply the uniqueness and stability of a solution with respect to the initial data and right-hand side and also the convergence of the solution to the difference problem to the solution to the differential problem.
@article{MT_2018_21_2_a2,
     author = {M. Kh. Beshtokov},
     title = {Nonlocal boundary value problems {for~Sobolev-type} fractional equations and grid methods for~solving them},
     journal = {Matemati\v{c}eskie trudy},
     pages = {72--101},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2018_21_2_a2/}
}
TY  - JOUR
AU  - M. Kh. Beshtokov
TI  - Nonlocal boundary value problems for~Sobolev-type fractional equations and grid methods for~solving them
JO  - Matematičeskie trudy
PY  - 2018
SP  - 72
EP  - 101
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2018_21_2_a2/
LA  - ru
ID  - MT_2018_21_2_a2
ER  - 
%0 Journal Article
%A M. Kh. Beshtokov
%T Nonlocal boundary value problems for~Sobolev-type fractional equations and grid methods for~solving them
%J Matematičeskie trudy
%D 2018
%P 72-101
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2018_21_2_a2/
%G ru
%F MT_2018_21_2_a2
M. Kh. Beshtokov. Nonlocal boundary value problems for~Sobolev-type fractional equations and grid methods for~solving them. Matematičeskie trudy, Tome 21 (2018) no. 2, pp. 72-101. http://geodesic.mathdoc.fr/item/MT_2018_21_2_a2/

[1] Alikhanov A. A., “Apriornye otsenki reshenii kraevykh zadach dlya uravnenii drobnogo poryadka”, Differents. uravneniya, 46:5 (2010), 658–664 | MR | Zbl

[2] Barenblatt G. I., Zheltov Yu. P., Kochina I. N., “Ob osnovnykh predstavleniyakh teorii filtratsii odnorodnykh zhidkostei v treschinovatykh porodakh”, Prikl. matem. i mekh., 24:5 (1960), 852–864 | Zbl

[3] Bedanokova S. Yu., “Uravnenie dvizheniya pochvennoi vlagi i matematicheskaya model vlagosoderzhaniya pochvennogo sloya, osnovannaya na uravnenii Allera”, Vestn. Adygeiskogo gos. un-ta. Ser. 4: Estestvenno-matematicheskie i tekhnicheskie nauki, 2007, no. 4, 68–71

[4] Vodakhova V. A., “Kraevaya zadacha s nelokalnym usloviem A. M. Nakhusheva dlya odnogo psevdoparabolicheskogo uravneniya vlagoperenosa”, Differents. uravneniya, 18:2 (1982), 280–285 | MR | Zbl

[5] Gerasimov A. N., “Obobschenie lineinykh zakonov deformatsii i ikh prilozhenie k zadacham vnutrennego treniya”, Prikl. matem. i mekh., 12 (1948), 251–260 | Zbl

[6] Goloviznin V. M., Kiselev V. P., Korotkii I. A., Chislennye metody resheniya uravneniya drobnoi diffuzii s drobnoi proizvodnoi po vremeni v odnomernom sluchae, Preprint No IBRAE-2003-12, Institut problem bezopasnogo razvitiya atomnoi energetiki RAN, M., 2003

[7] Goloviznin V. M., Kiselev V. P., Korotkii I. A., Yurkov Yu. I., Nekotorye osobennosti vychislitelnykh algoritmov dlya uravnenii drobnoi diffuzii, Preprint No IBRAE-2002-01, Institut problem bezopasnogo razvitiya atomnoi energetiki RAN, M., 2002

[8] Dzektser E. S., “Uravneniya dvizheniya podzemnykh vod so svobodnoi poverkhnostyu v mnogosloinykh sredakh”, Dokl. AN SSSR, 220:3 (1975), 540–543 | Zbl

[9] Kozhanov A. I., “Ob odnoi nelokalnoi kraevoi zadache s peremennymi koeffitsientami dlya uravnenii teploprovodnosti i Allera”, Differents. uravneniya, 40:6 (2004), 763–774 | MR | Zbl

[10] Kochubei A. N., “Diffuziya drobnogo poryadka”, Differents. uravneniya, 26:4 (1990), 660–670 | MR | Zbl

[11] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[12] Nigmatullin R. R., “Drobnyi integral i ego fizicheskaya interpretatsiya”, TMF, 90:3 (1992), 354–368 | MR | Zbl

[13] Rubinshtein L. I., “K voprosu o protsesse rasprostraneniya tepla v geterogennykh sredakh”, Izv. AN SSSR, Ser. geogr., 12:1 (1948), 27–45

[14] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983 | MR

[15] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973

[16] Sveshnikov A. A., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[17] Taukenova F. I., Shkhanukov-Lafishev M. Kh., “Raznostnye metody resheniya kraevykh zadach dlya differentsialnykh uravnenii drobnogo poryadka”, Zh. vychisl. matem. i matem. fiz., 46:10 (2006), 1871–1881 | MR

[18] Chudnovskii A. F., Teplofizika pochv, Nauka, M., 1976

[19] Alikhanov A. A., “A new difference scheme for the time fractional diffusion equation”, J. Comput. Phys., 280 (2015), 424–438 | DOI | MR | Zbl

[20] Bouziani A., “On a class of parabolic equations with a nonlocal boundary condition”, Bull. Cl. Sci., VI. Ser., Acad. R. Belg., 10 (1999), 61–77 | MR | Zbl

[21] Cannon J. R., “The solution of the heat equation subject to the specification of energy”, Quart. Appl. Math., 21 (1963), 155–160 | DOI | MR

[22] Caputo H., “Lineal model of dissipation whose $Q$ is almost frequency independent. II”, Geophys J. Astronom. Soc., 13 (1967), 529–539 | DOI

[23] Diethelm K., Walz G., “Numerical solution of fractional order differential equations by extrapolation”, Numer. Algorithms, 16:3–4 (1997), 231–253 | DOI | MR | Zbl

[24] Hallaire M., “Le potentiel efficace de l'eau dans le sol en regime de dessechement”, L'Eau et la Production Vegetale, Institut National de la Recherche Agronomique, Paris, 1964, 27–62

[25] Kamynin L. I., “A boundary value problem in the theory of heat conduction with a nonclassical boundary condition”, U.S.S.R. Comput. Math. Math. Phys., 4:6 (1964), 33–59 | DOI | MR

[26] Li D., Liao H. L., Sun W., Wang J., Zhang J., “Analysis of $L1$-Galerkin FEMs for time-fractional nonlinear parabolic problems”, Commun. Comput. Phys., 24:1 (2018), 86–103 | MR

[27] Podlubny I., Fractional Differential Equations, Academic Press, San Diego, CA, 1999 | MR | Zbl

[28] Ting T. W., “A cooling process according to two-temperature theory of heat conduction”, J. Math. Anal. Appl., 45 (1974), 23–31 | DOI | MR | Zbl