Nonlocal boundary value problems for~Sobolev-type fractional equations and grid methods for~solving them
Matematičeskie trudy, Tome 21 (2018) no. 2, pp. 72-101

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider nonlocal boundary value problems for a Sobolev-type equation with variable coefficients with fractional Gerasimov–Caputo derivative. The main result of the article consists in proving a priori estimates for solutions to nonlocal boundary value problems both in differential and difference form obtained under the assumption of the existence of a solution $u(x,t)$ in a class of sufficiently smooth functions. These inequalities imply the uniqueness and stability of a solution with respect to the initial data and right-hand side and also the convergence of the solution to the difference problem to the solution to the differential problem.
@article{MT_2018_21_2_a2,
     author = {M. Kh. Beshtokov},
     title = {Nonlocal boundary value problems {for~Sobolev-type} fractional equations and grid methods for~solving them},
     journal = {Matemati\v{c}eskie trudy},
     pages = {72--101},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2018_21_2_a2/}
}
TY  - JOUR
AU  - M. Kh. Beshtokov
TI  - Nonlocal boundary value problems for~Sobolev-type fractional equations and grid methods for~solving them
JO  - Matematičeskie trudy
PY  - 2018
SP  - 72
EP  - 101
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2018_21_2_a2/
LA  - ru
ID  - MT_2018_21_2_a2
ER  - 
%0 Journal Article
%A M. Kh. Beshtokov
%T Nonlocal boundary value problems for~Sobolev-type fractional equations and grid methods for~solving them
%J Matematičeskie trudy
%D 2018
%P 72-101
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2018_21_2_a2/
%G ru
%F MT_2018_21_2_a2
M. Kh. Beshtokov. Nonlocal boundary value problems for~Sobolev-type fractional equations and grid methods for~solving them. Matematičeskie trudy, Tome 21 (2018) no. 2, pp. 72-101. http://geodesic.mathdoc.fr/item/MT_2018_21_2_a2/