The Cauchy problem for one equation of Sobolev type
Matematičeskie trudy, Tome 21 (2018) no. 1, pp. 125-154

Voir la notice de l'article provenant de la source Math-Net.Ru

We give necessary and sufficient conditions for the existence of a solution to the Cauchy problem for the equation $\Delta^k\partial^2_tu+(-1)^ku=0$ in the space of tempered distributions.
@article{MT_2018_21_1_a5,
     author = {A. L. Pavlov},
     title = {The {Cauchy} problem for one equation of {Sobolev} type},
     journal = {Matemati\v{c}eskie trudy},
     pages = {125--154},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2018_21_1_a5/}
}
TY  - JOUR
AU  - A. L. Pavlov
TI  - The Cauchy problem for one equation of Sobolev type
JO  - Matematičeskie trudy
PY  - 2018
SP  - 125
EP  - 154
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2018_21_1_a5/
LA  - ru
ID  - MT_2018_21_1_a5
ER  - 
%0 Journal Article
%A A. L. Pavlov
%T The Cauchy problem for one equation of Sobolev type
%J Matematičeskie trudy
%D 2018
%P 125-154
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2018_21_1_a5/
%G ru
%F MT_2018_21_1_a5
A. L. Pavlov. The Cauchy problem for one equation of Sobolev type. Matematičeskie trudy, Tome 21 (2018) no. 1, pp. 125-154. http://geodesic.mathdoc.fr/item/MT_2018_21_1_a5/