On the solvability of one class of two-dimensional Urysohn integral equations
Matematičeskie trudy, Tome 20 (2017) no. 2, pp. 193-205
Voir la notice de l'article provenant de la source Math-Net.Ru
We study one class of nonlinear Urysohn integral equations in a quadrant of the plane. It is assumed that, for the corresponding two-dimensional Urysohn operator, some Hammerstein operator with power nonlinearity serves as a minorant in the sense of M. A. Krasnosel'skiĭ. We prove the existence of a nonnegative (nontrivial) and bounded solution for such equations.
@article{MT_2017_20_2_a7,
author = {Kh. A. Khachatryan},
title = {On the solvability of one class of two-dimensional {Urysohn} integral equations},
journal = {Matemati\v{c}eskie trudy},
pages = {193--205},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2017_20_2_a7/}
}
Kh. A. Khachatryan. On the solvability of one class of two-dimensional Urysohn integral equations. Matematičeskie trudy, Tome 20 (2017) no. 2, pp. 193-205. http://geodesic.mathdoc.fr/item/MT_2017_20_2_a7/