Stochastic equations with discontinuous jump functions
Matematičeskie trudy, Tome 20 (2017) no. 1, pp. 128-144

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, we consider a stochastic differential equation that contains an integral with respect to a Poisson measure but avoids the diffusion term. The integrand need not be continuous. We introduce a definition of a solution and prove the existence and uniqueness theorems.
@article{MT_2017_20_1_a7,
     author = {A. V. Logachov and S. Ya. Makhno},
     title = {Stochastic equations with discontinuous jump functions},
     journal = {Matemati\v{c}eskie trudy},
     pages = {128--144},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2017_20_1_a7/}
}
TY  - JOUR
AU  - A. V. Logachov
AU  - S. Ya. Makhno
TI  - Stochastic equations with discontinuous jump functions
JO  - Matematičeskie trudy
PY  - 2017
SP  - 128
EP  - 144
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2017_20_1_a7/
LA  - ru
ID  - MT_2017_20_1_a7
ER  - 
%0 Journal Article
%A A. V. Logachov
%A S. Ya. Makhno
%T Stochastic equations with discontinuous jump functions
%J Matematičeskie trudy
%D 2017
%P 128-144
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2017_20_1_a7/
%G ru
%F MT_2017_20_1_a7
A. V. Logachov; S. Ya. Makhno. Stochastic equations with discontinuous jump functions. Matematičeskie trudy, Tome 20 (2017) no. 1, pp. 128-144. http://geodesic.mathdoc.fr/item/MT_2017_20_1_a7/