On Fra{\"\i}ss{\'e}'s theorem for uncountable classes of finitely generated structures
Matematičeskie trudy, Tome 20 (2017) no. 1, pp. 121-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a weak version of Fraïssé's theorem for uncountable classes of finitely generated structures. We also solve Hodges' problem on failure of the complete analog of this theorem for uncountable classes of finitely generated structures.
@article{MT_2017_20_1_a6,
     author = {K. Zh. Kudaǐbergenov},
     title = {On {Fra{\"\i}ss{\'e}'s} theorem for uncountable classes of finitely generated structures},
     journal = {Matemati\v{c}eskie trudy},
     pages = {121--127},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2017_20_1_a6/}
}
TY  - JOUR
AU  - K. Zh. Kudaǐbergenov
TI  - On Fra{\"\i}ss{\'e}'s theorem for uncountable classes of finitely generated structures
JO  - Matematičeskie trudy
PY  - 2017
SP  - 121
EP  - 127
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2017_20_1_a6/
LA  - ru
ID  - MT_2017_20_1_a6
ER  - 
%0 Journal Article
%A K. Zh. Kudaǐbergenov
%T On Fra{\"\i}ss{\'e}'s theorem for uncountable classes of finitely generated structures
%J Matematičeskie trudy
%D 2017
%P 121-127
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2017_20_1_a6/
%G ru
%F MT_2017_20_1_a6
K. Zh. Kudaǐbergenov. On Fra{\"\i}ss{\'e}'s theorem for uncountable classes of finitely generated structures. Matematičeskie trudy, Tome 20 (2017) no. 1, pp. 121-127. http://geodesic.mathdoc.fr/item/MT_2017_20_1_a6/

[1] Ershov Yu. L., Problemy razreshimosti i konstruktivnye modeli, Nauka, M., 1980

[2] Keisler G., Chen Ch. Ch., Teoriya modelei, Mir, M., 1977

[3] Fraïssé R., “Sur l'extension aux relations de quelques propriétés des ordres”, Ann. Sci. École Norm. Sup. (3), 71 (1954), 363–388 | DOI | MR | Zbl

[4] Hodges W., Model Theory, Encyclopedia of Mathematics and Its Applications, 42, Cambridge University Press, Cambridge, 1993 | MR | Zbl