A majorant for the multiplicities of eigenvalues of the Laplace operator with periodic conditions
Matematičeskie trudy, Tome 20 (2017) no. 1, pp. 75-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the case of periodic conditions, we find explicit upper estimates in terms of power functions for the multiplicities $r_n(p)$ of eigenvalues of the Laplace operator.
@article{MT_2017_20_1_a3,
     author = {V. L. Vaskevich},
     title = {A majorant for the multiplicities of eigenvalues of the {Laplace} operator with periodic conditions},
     journal = {Matemati\v{c}eskie trudy},
     pages = {75--80},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2017_20_1_a3/}
}
TY  - JOUR
AU  - V. L. Vaskevich
TI  - A majorant for the multiplicities of eigenvalues of the Laplace operator with periodic conditions
JO  - Matematičeskie trudy
PY  - 2017
SP  - 75
EP  - 80
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2017_20_1_a3/
LA  - ru
ID  - MT_2017_20_1_a3
ER  - 
%0 Journal Article
%A V. L. Vaskevich
%T A majorant for the multiplicities of eigenvalues of the Laplace operator with periodic conditions
%J Matematičeskie trudy
%D 2017
%P 75-80
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2017_20_1_a3/
%G ru
%F MT_2017_20_1_a3
V. L. Vaskevich. A majorant for the multiplicities of eigenvalues of the Laplace operator with periodic conditions. Matematičeskie trudy, Tome 20 (2017) no. 1, pp. 75-80. http://geodesic.mathdoc.fr/item/MT_2017_20_1_a3/

[1] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Nauka, M., 1967

[2] Vaskevich V. L., “Konstanty vlozheniya periodicheskikh prostranstv Soboleva drobnogo poryadka”, Sib. matem. zhurn., 49:5 (2008), 1019–1027 | Zbl

[3] Vaskevich V. L., “Pogreshnost i garantirovannaya tochnost kubaturnykh formul v mnogomernykh periodicheskikh prostranstvakh Soboleva”, Sib. matem. zhurn., 55:5 (2014), 971–988

[4] Sobolev S. L., Skhodimost kubaturnykh formul na beskonechno differentsiruemykh funktsiyakh, Izbrannye trudy, v. 1, Uravnenie matematicheskoi fiziki. Vychislitelnaya matematika i kubaturnye formuly, Izd-vo In-ta matematiki, filial «Geo» Izd-va SO RAN, Novosibirsk, 2003

[5] Weisstein E. W., Sum of Squares Function, MathWorld–A Wolfram Web Resource, http://mathworld.wolfram.com/SumofSquaresFunction.html