On the evolution of invariant Riemannian metrics on one class of generalized Wallach spaces under the influence of the normalized Ricci flow
Matematičeskie trudy, Tome 20 (2017) no. 1, pp. 3-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of the evolution of invariant Riemannian metrics on the special class of generalized Wallach spaces corresponding to the case of $a_1=a_2=a_3=1/4$. We prove that the normalized Ricci flow evolves all generic invariant Riemannian metrics into metrics with positive Ricci curvature.
@article{MT_2017_20_1_a0,
     author = {N. A. Abiev},
     title = {On the evolution of invariant {Riemannian} metrics on one class of generalized {Wallach} spaces under the influence of the normalized {Ricci} flow},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2017_20_1_a0/}
}
TY  - JOUR
AU  - N. A. Abiev
TI  - On the evolution of invariant Riemannian metrics on one class of generalized Wallach spaces under the influence of the normalized Ricci flow
JO  - Matematičeskie trudy
PY  - 2017
SP  - 3
EP  - 20
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2017_20_1_a0/
LA  - ru
ID  - MT_2017_20_1_a0
ER  - 
%0 Journal Article
%A N. A. Abiev
%T On the evolution of invariant Riemannian metrics on one class of generalized Wallach spaces under the influence of the normalized Ricci flow
%J Matematičeskie trudy
%D 2017
%P 3-20
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2017_20_1_a0/
%G ru
%F MT_2017_20_1_a0
N. A. Abiev. On the evolution of invariant Riemannian metrics on one class of generalized Wallach spaces under the influence of the normalized Ricci flow. Matematičeskie trudy, Tome 20 (2017) no. 1, pp. 3-20. http://geodesic.mathdoc.fr/item/MT_2017_20_1_a0/

[1] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966

[2] Lomshakov A. M., Nikonorov Yu. G., Firsov E. V., “Invariantnye metriki Einshteina na tri-lokalno-simmetricheskikh prostranstvakh”, Matem. tr., 6:2 (2003), 80–101 | Zbl

[3] Nikonorov Yu. G., “Ob odnom klasse odnorodnykh kompaktnykh mnogoobrazii Einshteina”, Sib. matem. zhurn., 41:1 (2000), 200–205 | Zbl

[4] Rodionov E. D., “Einshteinovy metriki na chetnomernykh odnorodnykh prostranstvakh, dopuskayuschikh odnorodnuyu rimanovu metriku polozhitelnoi sektsionnoi krivizny”, Sib. matem. zhurn., 32:3 (1991), 126–131

[5] Abiev N. A., “On topological structure of some sets related to the normalized Ricci flow on generalized Wallach spaces”, Vladikavkaz. matem. zh., 17:3 (2015), 5–13 | MR

[6] Abiev N. A., Arvanitoyeorgos A., Nikonorov Yu. G., Siasos P., “The dynamics of the Ricci flow on generalized Wallach spaces”, Differ. Geom. Appl., 35, Suppl. (2014), 26–43 | DOI | MR | Zbl

[7] Abiev N. A., Arvanitoyeorgos A., Nikonorov Yu. G., Siasos P., “The Ricci flow on some generalized Wallach spaces”, Geometry and Its Applications, Springer Proc. in Math. Stat., 72, eds. V. Rovenski, P. Walczak, Springer, Cham, 2014, 3–37 | DOI | MR | Zbl

[8] Abiev N. A., Nikonorov Yu. G., “The evolution of positively curved invariant Riemannian metrics on the Wallach spaces under the Ricci flow”, Ann. Global Anal. Geom., 50:1 (2016), 65–84 | DOI | MR | Zbl

[9] Arnol'd V. I., Gusein-Zade S. M., Varchenko A. N., Singularities of Differentiable Maps, v. 1, Monographs in Mathematics, 82, Birkhäuser, Boston–Basel–Stuttgart, 1985 | MR | Zbl

[10] Arvanitoyeorgos A., “New invariant Einstein metrics on generalized flag manifolds”, Trans. Amer. Math. Soc., 337:2 (1993), 981–995 | DOI | MR | Zbl

[11] Besse A. L., Einstein Manifolds, Springer-Verlag, Berlin, etc., 1987 | MR | Zbl

[12] Böhm C., “On the long time behavior of homogeneous Ricci flows”, Comment. Math. Helv., 90:3 (2015), 543–571 | DOI | MR | Zbl

[13] Böhm C., Wilking B., “Nonnegatively curved manifolds with finite fundamental groups admit metrics with positive Ricci curvature”, Geom. Funct. Anal., 17:3 (2007), 665–681 | DOI | MR | Zbl

[14] Buzano M., “Ricci flow on homogeneous spaces with two isotropy summands”, Ann. Global Anal. Geom., 45:1 (2014), 25–45 | DOI | MR | Zbl

[15] Chen Z., Kang Y., Liang K., “Invariant Einstein metrics on three-locally-symmetric spaces”, Commun. Anal. Geom., 24:4 (2016), 769–792 | DOI | MR | Zbl

[16] Cheung M. W., Wallach N. R., “Ricci flow and curvature on the variety of flags on the two dimensional projective space over the complexes, quaternions and octonions”, Proc. Amer. Math. Soc., 143:1 (2015), 369–378 | DOI | MR | Zbl

[17] Darboux G., Leçons sur la théorie générale des surfaces et les applications géometriques du calcul infinitésimal, v. 4, Gauthier-Villars, Paris, 1896 | MR

[18] D'Atri J. E., Nickerson H. K., “Geodesic symmetries in space with special curvature tensors”, J. Differ. Geom., 9 (1974), 251–262 | DOI | MR | Zbl

[19] Dumortier F., Llibre J., Artes J., Qualitative Theory of Planar Differential Systems, Universitext, Springer-Verlag, Berlin, 2006 | MR | Zbl

[20] Hamilton R. S., “Three-manifolds with positive Ricci curvature”, J. Differ. Geom., 17 (1982), 255–306 | DOI | MR | Zbl

[21] Jablonski M., “Homogeneous Ricci solitons”, J. Reine Angew. Math., 699 (2015), 159–182 | MR | Zbl

[22] Jiang Q., Llibre J., “Qualitative classification of singular points”, Qual. Theory Dyn. Syst., 6:1 (2005), 87–167 | DOI | MR | Zbl

[23] Kimura M., “Homogeneous Einstein metrics on certain Kähler C-spaces”, Adv. Stud. Pure Math., 18:1 (1990), 303–320 | MR | Zbl

[24] Lafuente R., “Scalar curvature behavior of homogeneous Ricci flows”, J. Geom. Anal., 25:4 (2015), 2313–2322 | DOI | MR | Zbl

[25] Lauret J., “Ricci flow on homogeneous manifolds”, Math. Z., 274:1–2 (2013), 373–403 | DOI | MR | Zbl

[26] Ni L., “Ricci flow and manifolds with positive curvature”, Symmetry: Representation Theory and Its Applications, In honor of Nolan R. Wallach, Progress in Math., 257, eds. R. Howe, M. Hunziker, J. F. Willenbring, Birkhäuser/Springer, New York, 2014, 491–504 | DOI | MR | Zbl

[27] Nikonorov Yu. G., “Classification of generalized Wallach spaces”, Geom. Dedicata, 181:1 (2016), 193–212 | DOI | MR | Zbl

[28] Nikonorov Yu. G., Rodionov E. D., Slavskii V. V., “Geometry of homogeneous Riemannian manifolds”, J. Math. Sci. (New York), 146:6 (2007), 6313–6390 | DOI | MR | Zbl

[29] Payne T. L., “The Ricci flow for nilmanifolds”, J. Mod. Dyn., 4:1 (2010), 65–90 | DOI | MR | Zbl

[30] Wallach N. R., “Compact homogeneous Riemannian manifolds with strictly positive curvature”, Ann. Math., 96:2 (1972), 277–295 | DOI | MR | Zbl