The large deviation principle for a compound Poisson process
Matematičeskie trudy, Tome 19 (2016) no. 2, pp. 119-157

Voir la notice de l'article provenant de la source Math-Net.Ru

For a compound Poisson process, under the moment Cramér condition, the extended large deviation principle is established in the space of functions of bounded variation with the Borovkov metric.
@article{MT_2016_19_2_a4,
     author = {A. A. Mogul'skiǐ},
     title = {The large deviation principle for a compound {Poisson} process},
     journal = {Matemati\v{c}eskie trudy},
     pages = {119--157},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2016_19_2_a4/}
}
TY  - JOUR
AU  - A. A. Mogul'skiǐ
TI  - The large deviation principle for a compound Poisson process
JO  - Matematičeskie trudy
PY  - 2016
SP  - 119
EP  - 157
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2016_19_2_a4/
LA  - ru
ID  - MT_2016_19_2_a4
ER  - 
%0 Journal Article
%A A. A. Mogul'skiǐ
%T The large deviation principle for a compound Poisson process
%J Matematičeskie trudy
%D 2016
%P 119-157
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2016_19_2_a4/
%G ru
%F MT_2016_19_2_a4
A. A. Mogul'skiǐ. The large deviation principle for a compound Poisson process. Matematičeskie trudy, Tome 19 (2016) no. 2, pp. 119-157. http://geodesic.mathdoc.fr/item/MT_2016_19_2_a4/