Existence of solutions to a nonvariational elliptic boundary value problem with parameter and discontinuous nonlinearity
Matematičeskie trudy, Tome 19 (2016) no. 1, pp. 91-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the question of the existence of the Dirichlet problem for second-order elliptic equations with spectral parameter and a nonlinearity discontinuous with respect to the phase variable. Here it is not assumed that the differential operator is formally selfadjoint. Using the method of upper and lower solutions, we establish results on the existence of nontrivial (positive and negative) solutions under positive values of the spectral parameter for the problems under study.
@article{MT_2016_19_1_a3,
     author = {V. N. Pavlenko and D. K. Potapov},
     title = {Existence of solutions to a nonvariational elliptic boundary value problem with parameter and discontinuous nonlinearity},
     journal = {Matemati\v{c}eskie trudy},
     pages = {91--105},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2016_19_1_a3/}
}
TY  - JOUR
AU  - V. N. Pavlenko
AU  - D. K. Potapov
TI  - Existence of solutions to a nonvariational elliptic boundary value problem with parameter and discontinuous nonlinearity
JO  - Matematičeskie trudy
PY  - 2016
SP  - 91
EP  - 105
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2016_19_1_a3/
LA  - ru
ID  - MT_2016_19_1_a3
ER  - 
%0 Journal Article
%A V. N. Pavlenko
%A D. K. Potapov
%T Existence of solutions to a nonvariational elliptic boundary value problem with parameter and discontinuous nonlinearity
%J Matematičeskie trudy
%D 2016
%P 91-105
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2016_19_1_a3/
%G ru
%F MT_2016_19_1_a3
V. N. Pavlenko; D. K. Potapov. Existence of solutions to a nonvariational elliptic boundary value problem with parameter and discontinuous nonlinearity. Matematičeskie trudy, Tome 19 (2016) no. 1, pp. 91-105. http://geodesic.mathdoc.fr/item/MT_2016_19_1_a3/

[1] Krasnoselskii M. A., Pokrovskii A. V., “Pravilnye resheniya ellipticheskikh uravnenii s razryvnymi nelineinostyami”, Tr. Vsesoyuz. konf. po uravneniyam s chastnymi proizvodnymi, posvyaschennoi 75-letiyu so dnya rozhdeniya akademika I. G. Petrovskogo, Izd-vo Mosk. un-ta, M., 1978, 346–347

[2] Krasnoselskii M. A., Pokrovskii A. V., “Ob ellipticheskikh uravneniyakh s razryvnymi nelineinostyami”, Dokl. RAN, 342:6 (1995), 731–734 | MR

[3] Krasnoselskii M. A., Sobolev A. V., “O nepodvizhnykh tochkakh razryvnykh operatorov”, Sib. matem. zhurn., 14:3 (1973), 674–677 | MR

[4] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[5] Pavlenko V. N., “O suschestvovanii polupravilnykh reshenii pervoi kraevoi zadachi dlya uravneniya parabolicheskogo tipa s razryvnoi nemonotonnoi nelineinostyu”, Differents. uravneniya, 27:3 (1991), 520–526 | MR | Zbl

[6] Pavlenko V. N., Potapov D. K., “O suschestvovanii lucha sobstvennykh znachenii dlya uravnenii s razryvnymi operatorami”, Sib. matem. zhurn., 42:4 (2001), 911–919 | MR | Zbl

[7] Pavlenko V. N., Ulyanova O. V., “Metod verkhnikh i nizhnikh reshenii dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Izv. vuzov. Matem., 1998, no. 11, 69–76 | MR | Zbl

[8] Pavlenko V. N., Ulyanova O. V., “Metod verkhnikh i nizhnikh reshenii dlya uravnenii parabolicheskogo tipa s razryvnymi nelineinostyami”, Differents. uravneniya, 38:4 (2002), 499–504 | MR | Zbl

[9] Potapov D. K., “O suschestvovanii lucha sobstvennykh znachenii dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami v kriticheskom sluchae”, Vestn. SPbGU. Ser. 10. Prikladnaya matematika. Informatika. Protsessy upravleniya, 2004, no. 4, 125–132

[10] Potapov D. K., “Ob odnoi otsenke sverkhu velichiny bifurkatsionnogo parametra v zadachakh na sobstvennye znacheniya dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Differents. uravneniya, 44:5 (2008), 715–716 | MR | Zbl

[11] Potapov D. K., “Nepreryvnye approksimatsii zadachi Goldshtika”, Matem. zametki, 87:2 (2010), 262–266 | DOI | Zbl

[12] Potapov D. K., “O strukture mnozhestva sobstvennykh znachenii dlya uravnenii ellipticheskogo tipa vysokogo poryadka s razryvnymi nelineinostyami”, Differents. uravneniya, 46:1 (2010), 150–152 | Zbl

[13] Potapov D. K., “O «razdelyayuschem» mnozhestve dlya uravnenii ellipticheskogo tipa vysokogo poryadka s razryvnymi nelineinostyami”, Differents. uravneniya, 46:3 (2010), 451–453 | MR | Zbl

[14] Potapov D. K., “Bifurkatsionnye zadachi dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Matem. zametki, 90:2 (2011), 280–284 | DOI | Zbl

[15] Potapov D. K., “O chisle polupravilnykh reshenii v zadachakh so spektralnym parametrom dlya uravnenii ellipticheskogo tipa vysokogo poryadka s razryvnymi nelineinostyami”, Differents. uravneniya, 48:3 (2012), 447–449 | Zbl

[16] Potapov D. K., “O resheniyakh zadachi Goldshtika”, Sib. zhurn. vychisl. matem., 15:4 (2012), 409–415 | MR | Zbl

[17] Potapov D. K., “Ob odnoi zadache elektrofiziki s razryvnoi nelineinostyu”, Differents. uravneniya, 50:3 (2014), 421–424 | DOI | MR | Zbl

[18] Amann H., “On the number of solutions of nonlinear equations in ordered Banach spaces”, J. Funct. Anal., 11:3 (1972), 346–384 | DOI | MR | Zbl

[19] Amann H., “Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces”, SIAM Rev., 18:4 (1976), 620–709 | DOI | MR | Zbl

[20] Amann H., “Existence and multiplicity theorems for semi-linear elliptic boundary value problems”, Math. Z., 150:3 (1976), 281–295 | DOI | MR | Zbl

[21] Amann H., “Supersolutions, monotone iterations, and stability”, J. Differential Equations, 21:2 (1976), 363–377 | DOI | MR | Zbl

[22] Amann H., Crandall M. G., “On some existence theorems for semi-linear elliptic equations”, Indiana Univ. Math. J., 27:5 (1978), 779–790 | DOI | MR | Zbl

[23] Basile N., Mininni M., “Some solvability results for elliptic boundary value problems in resonance at the first eigenvalue with discontinuous nonlinearities”, Boll. Un. Mat. Ital. B (5), 17:3 (1980), 1023–1033 | MR | Zbl

[24] Bonanno G., Candito P., “Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities”, J. Differential Equations, 244:12 (2008), 3031–3059 | DOI | MR | Zbl

[25] Chang K.-C., “The obstacle problem and partial differential equations with discontinuous nonlinearities”, Comm. Pure Appl. Math., 33:2 (1980), 117–146 | DOI | MR | Zbl

[26] Chrayteh H., Rakotoson J. M., “Eigenvalue problems with fully discontinuous operators and critical exponents”, Nonlinear Anal., 73:7 (2010), 2036–2055 | DOI | MR | Zbl

[27] Iannacci R., Nkashama M. N., Ward J. R. (jun.), “Nonlinear second order elliptic partial differential equations at resonance”, Trans. Amer. Math. Soc., 311:2 (1989), 711–726 | DOI | MR | Zbl

[28] Marano S. A., Motreanu D., “On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems”, Nonlinear Anal., 48:1 (2002), 37–52 | DOI | MR | Zbl

[29] Massabo I., “Elliptic boundary value problems at resonance with discontinuous nonlinearities”, Boll. Un. Mat. Ital. B (5), 17:3 (1980), 1308–1320 | MR | Zbl

[30] Potapov D. K., Yevstafyeva V. V., “Lavrent'ev problem for separated flows with an external perturbation”, Electron. J. Differential Equations, 255 (2013), 1–6 | DOI | MR

[31] Schmitt K., “Revisiting the method of sub- and supersolutions for nonlinear elliptic problems”, Electron. J. Differential Equations, 2007, Conf. 15, 377–385 | MR | Zbl

[32] Stuart C. A., “Maximal and minimal solutions of elliptic differential equations with discontinuous non-linearities”, Math. Z., 163:3 (1978), 239–249 | DOI | MR | Zbl

[33] Stuart C. A., Toland J. F., “A property of solutions of elliptic differential equations with discontinuous nonlinearities”, J. London Math. Soc. (2), 21:2 (1980), 329–335 | DOI | MR | Zbl

[34] Wang C., Huang Y., “Multiple solutions for a class of quasilinear elliptic problems with discontinuous nonlinearities and weights”, Nonlinear Anal., 72:11 (2010), 4076–4081 | DOI | MR | Zbl