Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2016_19_1_a3, author = {V. N. Pavlenko and D. K. Potapov}, title = {Existence of solutions to a nonvariational elliptic boundary value problem with parameter and discontinuous nonlinearity}, journal = {Matemati\v{c}eskie trudy}, pages = {91--105}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2016_19_1_a3/} }
TY - JOUR AU - V. N. Pavlenko AU - D. K. Potapov TI - Existence of solutions to a nonvariational elliptic boundary value problem with parameter and discontinuous nonlinearity JO - Matematičeskie trudy PY - 2016 SP - 91 EP - 105 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2016_19_1_a3/ LA - ru ID - MT_2016_19_1_a3 ER -
%0 Journal Article %A V. N. Pavlenko %A D. K. Potapov %T Existence of solutions to a nonvariational elliptic boundary value problem with parameter and discontinuous nonlinearity %J Matematičeskie trudy %D 2016 %P 91-105 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MT_2016_19_1_a3/ %G ru %F MT_2016_19_1_a3
V. N. Pavlenko; D. K. Potapov. Existence of solutions to a nonvariational elliptic boundary value problem with parameter and discontinuous nonlinearity. Matematičeskie trudy, Tome 19 (2016) no. 1, pp. 91-105. http://geodesic.mathdoc.fr/item/MT_2016_19_1_a3/
[1] Krasnoselskii M. A., Pokrovskii A. V., “Pravilnye resheniya ellipticheskikh uravnenii s razryvnymi nelineinostyami”, Tr. Vsesoyuz. konf. po uravneniyam s chastnymi proizvodnymi, posvyaschennoi 75-letiyu so dnya rozhdeniya akademika I. G. Petrovskogo, Izd-vo Mosk. un-ta, M., 1978, 346–347
[2] Krasnoselskii M. A., Pokrovskii A. V., “Ob ellipticheskikh uravneniyakh s razryvnymi nelineinostyami”, Dokl. RAN, 342:6 (1995), 731–734 | MR
[3] Krasnoselskii M. A., Sobolev A. V., “O nepodvizhnykh tochkakh razryvnykh operatorov”, Sib. matem. zhurn., 14:3 (1973), 674–677 | MR
[4] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR
[5] Pavlenko V. N., “O suschestvovanii polupravilnykh reshenii pervoi kraevoi zadachi dlya uravneniya parabolicheskogo tipa s razryvnoi nemonotonnoi nelineinostyu”, Differents. uravneniya, 27:3 (1991), 520–526 | MR | Zbl
[6] Pavlenko V. N., Potapov D. K., “O suschestvovanii lucha sobstvennykh znachenii dlya uravnenii s razryvnymi operatorami”, Sib. matem. zhurn., 42:4 (2001), 911–919 | MR | Zbl
[7] Pavlenko V. N., Ulyanova O. V., “Metod verkhnikh i nizhnikh reshenii dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Izv. vuzov. Matem., 1998, no. 11, 69–76 | MR | Zbl
[8] Pavlenko V. N., Ulyanova O. V., “Metod verkhnikh i nizhnikh reshenii dlya uravnenii parabolicheskogo tipa s razryvnymi nelineinostyami”, Differents. uravneniya, 38:4 (2002), 499–504 | MR | Zbl
[9] Potapov D. K., “O suschestvovanii lucha sobstvennykh znachenii dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami v kriticheskom sluchae”, Vestn. SPbGU. Ser. 10. Prikladnaya matematika. Informatika. Protsessy upravleniya, 2004, no. 4, 125–132
[10] Potapov D. K., “Ob odnoi otsenke sverkhu velichiny bifurkatsionnogo parametra v zadachakh na sobstvennye znacheniya dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Differents. uravneniya, 44:5 (2008), 715–716 | MR | Zbl
[11] Potapov D. K., “Nepreryvnye approksimatsii zadachi Goldshtika”, Matem. zametki, 87:2 (2010), 262–266 | DOI | Zbl
[12] Potapov D. K., “O strukture mnozhestva sobstvennykh znachenii dlya uravnenii ellipticheskogo tipa vysokogo poryadka s razryvnymi nelineinostyami”, Differents. uravneniya, 46:1 (2010), 150–152 | Zbl
[13] Potapov D. K., “O «razdelyayuschem» mnozhestve dlya uravnenii ellipticheskogo tipa vysokogo poryadka s razryvnymi nelineinostyami”, Differents. uravneniya, 46:3 (2010), 451–453 | MR | Zbl
[14] Potapov D. K., “Bifurkatsionnye zadachi dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Matem. zametki, 90:2 (2011), 280–284 | DOI | Zbl
[15] Potapov D. K., “O chisle polupravilnykh reshenii v zadachakh so spektralnym parametrom dlya uravnenii ellipticheskogo tipa vysokogo poryadka s razryvnymi nelineinostyami”, Differents. uravneniya, 48:3 (2012), 447–449 | Zbl
[16] Potapov D. K., “O resheniyakh zadachi Goldshtika”, Sib. zhurn. vychisl. matem., 15:4 (2012), 409–415 | MR | Zbl
[17] Potapov D. K., “Ob odnoi zadache elektrofiziki s razryvnoi nelineinostyu”, Differents. uravneniya, 50:3 (2014), 421–424 | DOI | MR | Zbl
[18] Amann H., “On the number of solutions of nonlinear equations in ordered Banach spaces”, J. Funct. Anal., 11:3 (1972), 346–384 | DOI | MR | Zbl
[19] Amann H., “Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces”, SIAM Rev., 18:4 (1976), 620–709 | DOI | MR | Zbl
[20] Amann H., “Existence and multiplicity theorems for semi-linear elliptic boundary value problems”, Math. Z., 150:3 (1976), 281–295 | DOI | MR | Zbl
[21] Amann H., “Supersolutions, monotone iterations, and stability”, J. Differential Equations, 21:2 (1976), 363–377 | DOI | MR | Zbl
[22] Amann H., Crandall M. G., “On some existence theorems for semi-linear elliptic equations”, Indiana Univ. Math. J., 27:5 (1978), 779–790 | DOI | MR | Zbl
[23] Basile N., Mininni M., “Some solvability results for elliptic boundary value problems in resonance at the first eigenvalue with discontinuous nonlinearities”, Boll. Un. Mat. Ital. B (5), 17:3 (1980), 1023–1033 | MR | Zbl
[24] Bonanno G., Candito P., “Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities”, J. Differential Equations, 244:12 (2008), 3031–3059 | DOI | MR | Zbl
[25] Chang K.-C., “The obstacle problem and partial differential equations with discontinuous nonlinearities”, Comm. Pure Appl. Math., 33:2 (1980), 117–146 | DOI | MR | Zbl
[26] Chrayteh H., Rakotoson J. M., “Eigenvalue problems with fully discontinuous operators and critical exponents”, Nonlinear Anal., 73:7 (2010), 2036–2055 | DOI | MR | Zbl
[27] Iannacci R., Nkashama M. N., Ward J. R. (jun.), “Nonlinear second order elliptic partial differential equations at resonance”, Trans. Amer. Math. Soc., 311:2 (1989), 711–726 | DOI | MR | Zbl
[28] Marano S. A., Motreanu D., “On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems”, Nonlinear Anal., 48:1 (2002), 37–52 | DOI | MR | Zbl
[29] Massabo I., “Elliptic boundary value problems at resonance with discontinuous nonlinearities”, Boll. Un. Mat. Ital. B (5), 17:3 (1980), 1308–1320 | MR | Zbl
[30] Potapov D. K., Yevstafyeva V. V., “Lavrent'ev problem for separated flows with an external perturbation”, Electron. J. Differential Equations, 255 (2013), 1–6 | DOI | MR
[31] Schmitt K., “Revisiting the method of sub- and supersolutions for nonlinear elliptic problems”, Electron. J. Differential Equations, 2007, Conf. 15, 377–385 | MR | Zbl
[32] Stuart C. A., “Maximal and minimal solutions of elliptic differential equations with discontinuous non-linearities”, Math. Z., 163:3 (1978), 239–249 | DOI | MR | Zbl
[33] Stuart C. A., Toland J. F., “A property of solutions of elliptic differential equations with discontinuous nonlinearities”, J. London Math. Soc. (2), 21:2 (1980), 329–335 | DOI | MR | Zbl
[34] Wang C., Huang Y., “Multiple solutions for a class of quasilinear elliptic problems with discontinuous nonlinearities and weights”, Nonlinear Anal., 72:11 (2010), 4076–4081 | DOI | MR | Zbl