Stability theorems and the second-order asymptotics in threshold phenomena for boundary functionals of random walks
Matematičeskie trudy, Tome 19 (2016) no. 1, pp. 46-69
Voir la notice de l'article provenant de la source Math-Net.Ru
In Section 1, we prove stability theorems for a series of boundary functionals of random walks. In Section 2, we suggest a new simpler proof of the theorem on threshold phenomena for the distribution of the maximum of the consecutive sums of random variables. In Section 3, we find the second-order asymptotics for this distribution under the assumption that the third moments of the random variables exist.
@article{MT_2016_19_1_a1,
author = {A. A. Borovkov},
title = {Stability theorems and the second-order asymptotics in threshold phenomena for boundary functionals of random walks},
journal = {Matemati\v{c}eskie trudy},
pages = {46--69},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2016_19_1_a1/}
}
TY - JOUR AU - A. A. Borovkov TI - Stability theorems and the second-order asymptotics in threshold phenomena for boundary functionals of random walks JO - Matematičeskie trudy PY - 2016 SP - 46 EP - 69 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2016_19_1_a1/ LA - ru ID - MT_2016_19_1_a1 ER -
A. A. Borovkov. Stability theorems and the second-order asymptotics in threshold phenomena for boundary functionals of random walks. Matematičeskie trudy, Tome 19 (2016) no. 1, pp. 46-69. http://geodesic.mathdoc.fr/item/MT_2016_19_1_a1/