Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2016_19_1_a0, author = {V. N. Berestovskii and I. A. Zubareva and V. M. Svirkin}, title = {The spectra of the {Laplace} operators on connected compact simple {Lie} groups of rank~3}, journal = {Matemati\v{c}eskie trudy}, pages = {3--45}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2016_19_1_a0/} }
TY - JOUR AU - V. N. Berestovskii AU - I. A. Zubareva AU - V. M. Svirkin TI - The spectra of the Laplace operators on connected compact simple Lie groups of rank~3 JO - Matematičeskie trudy PY - 2016 SP - 3 EP - 45 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2016_19_1_a0/ LA - ru ID - MT_2016_19_1_a0 ER -
%0 Journal Article %A V. N. Berestovskii %A I. A. Zubareva %A V. M. Svirkin %T The spectra of the Laplace operators on connected compact simple Lie groups of rank~3 %J Matematičeskie trudy %D 2016 %P 3-45 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MT_2016_19_1_a0/ %G ru %F MT_2016_19_1_a0
V. N. Berestovskii; I. A. Zubareva; V. M. Svirkin. The spectra of the Laplace operators on connected compact simple Lie groups of rank~3. Matematičeskie trudy, Tome 19 (2016) no. 1, pp. 3-45. http://geodesic.mathdoc.fr/item/MT_2016_19_1_a0/
[1] Adams Dzh., Lektsii po gruppam Li, Nauka, M., 1979 | MR
[2] Berestovskii V. N., “O spektre operatora Laplasa dlya veschestvennykh funktsii na kompaktnykh normalnykh odnorodnykh rimanovykh mnogoobraziyakh”, Dni geometrii v Novosibirske-2011, Tr. mezhdunar. konf., posvyaschennoi 50-letiyu kafedry geometrii i topologii Novosibirskogo gos. un-ta, Izd-vo NGU, Novosibirsk, 2012, 16–28
[3] Berestovskii V. N., “Zonalnye sfericheskie funktsii na KROSPakh i spetsialnye funktsii”, Sib. matem. zhurn., 53:4 (2012), 765–780 | MR | Zbl
[4] Berestovskii V. N., Svirkin V. M., “Operator Laplasa na odnorodnykh normalnykh rimanovykh mnogoobraziyakh”, Matem. tr., 12:2 (2009), 3–40 | MR
[5] Berestovskii V. N., Svirkin V. M., “Spektr operatora Laplasa na kompaktnykh odnosvyaznykh prostykh gruppakh Li ranga dva”, Uchen. zap. Kazan. gos. un-ta. Ser. Fiz.-matem. nauki., 151:4 (2009), 15–35 | Zbl
[6] Burbaki N., Gruppy i algebry Li, v. IV–VI, Mir, M., 1972 | MR
[7] Bukhshtab A. A., Teoriya chisel, Gos. uch.-ped. izdat., M., 1960
[8] Venkov B. A., Elementarnaya teoriya chisel, Ob'ed. nauch.-tekhn. izd-vo NKTP SSSR, M.–L., 1937
[9] Dynkin E. B., Onischik A. L., “Kompaktnye gruppy Li v tselom”, UMN, 10:4(66) (1955), 3–74 | MR | Zbl
[10] Devenport G., Vysshaya arifmetika. Vvedenie v teoriyu chisel, Nauka, M., 1965
[11] Konvei Dzh., Sloen N., Upakovki sharov, reshetki i gruppy, v. 1, 2, Mir, M., 1990
[12] G. P. Matvievskaya, E. P. Ozhigova i dr. (sost.), Neopublikovannye materialy L. Eilera po teorii chisel, ed. Nevskaya N. I., Nauka, SPb, 1997
[13] Svirkin V. M., “Spektr operatora Laplasa svyaznykh kompaktnykh prostykh grupp Li ranga odin i dva”, Uchen. zap. Kazan. gos. un-ta. Ser. Fiz.-matem. nauki, 152:1 (2010), 219–234 | MR | Zbl
[14] Cartan E., “Les groupes projectifs qui ne laissent invariante aucune multiplicity plane”, Bull. Soc. Math. France, 41 (1913), 53–94 | MR
[15] Conway J. H., The Sensual Quadratic Form, The Carus Mathematical Monographs, 26, The Mathematical Association of America, Washington, DC, 1997 | MR | Zbl
[16] Onishchik A. L., Lectures on Real Semisimple Lie Algebras and Their Representations, ESI Lectures in Mathematics and Physics, European Math. Soc. Publishing House, Zurich, Switzerland, 2004 | MR | Zbl