The spectra of the Laplace operators on connected compact simple Lie groups of rank~3
Matematičeskie trudy, Tome 19 (2016) no. 1, pp. 3-45

Voir la notice de l'article provenant de la source Math-Net.Ru

We expose explicit calculations of the spectra of the Laplace operators for smooth real or complex functions on all connected compact simple Lie groups of rank 3 with bi-invariant Riemannian metric and establish the relationship of the obtained formulas with number theory and integer-valued ternary and binary quadratic forms.
@article{MT_2016_19_1_a0,
     author = {V. N. Berestovskii and I. A. Zubareva and V. M. Svirkin},
     title = {The spectra of the {Laplace} operators on connected compact simple {Lie} groups of rank~3},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--45},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2016_19_1_a0/}
}
TY  - JOUR
AU  - V. N. Berestovskii
AU  - I. A. Zubareva
AU  - V. M. Svirkin
TI  - The spectra of the Laplace operators on connected compact simple Lie groups of rank~3
JO  - Matematičeskie trudy
PY  - 2016
SP  - 3
EP  - 45
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2016_19_1_a0/
LA  - ru
ID  - MT_2016_19_1_a0
ER  - 
%0 Journal Article
%A V. N. Berestovskii
%A I. A. Zubareva
%A V. M. Svirkin
%T The spectra of the Laplace operators on connected compact simple Lie groups of rank~3
%J Matematičeskie trudy
%D 2016
%P 3-45
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2016_19_1_a0/
%G ru
%F MT_2016_19_1_a0
V. N. Berestovskii; I. A. Zubareva; V. M. Svirkin. The spectra of the Laplace operators on connected compact simple Lie groups of rank~3. Matematičeskie trudy, Tome 19 (2016) no. 1, pp. 3-45. http://geodesic.mathdoc.fr/item/MT_2016_19_1_a0/