Sturm--Liouville problems in weighted spaces in domains with nonsmooth edges.~II
Matematičeskie trudy, Tome 18 (2015) no. 2, pp. 133-204.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a (generally, noncoercive) mixed boundary value problem in a bounded domain $\mathcal{D}$ of ${\mathbb{R}}^n$ for a second order elliptic differential operator $A (x,\partial)$. The differential operator is assumed to be of divergent form in $\mathcal{D}$ and the boundary operator $B (x,\partial)$ is of Robin type on $\partial \mathcal{D}$. The boundary of $\mathcal{D}$ is assumed to be a Lipschitz surface. Besides, we distinguish a closed subset $Y \subset \partial \mathcal{D}$ and control the growth of solutions near $Y$. We prove that the pair $(A,B)$ induces a Fredholm operator $L$ in suitable weighted spaces of Sobolev type, the weight function being a power of the distance to the singular set $Y$. Moreover, we prove the completeness of root functions related to $L$.
@article{MT_2015_18_2_a7,
     author = {N. Tarkhanov and A. A. Shlapunov},
     title = {Sturm--Liouville problems in weighted spaces in domains with nonsmooth {edges.~II}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {133--204},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2015_18_2_a7/}
}
TY  - JOUR
AU  - N. Tarkhanov
AU  - A. A. Shlapunov
TI  - Sturm--Liouville problems in weighted spaces in domains with nonsmooth edges.~II
JO  - Matematičeskie trudy
PY  - 2015
SP  - 133
EP  - 204
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2015_18_2_a7/
LA  - ru
ID  - MT_2015_18_2_a7
ER  - 
%0 Journal Article
%A N. Tarkhanov
%A A. A. Shlapunov
%T Sturm--Liouville problems in weighted spaces in domains with nonsmooth edges.~II
%J Matematičeskie trudy
%D 2015
%P 133-204
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2015_18_2_a7/
%G ru
%F MT_2015_18_2_a7
N. Tarkhanov; A. A. Shlapunov. Sturm--Liouville problems in weighted spaces in domains with nonsmooth edges.~II. Matematičeskie trudy, Tome 18 (2015) no. 2, pp. 133-204. http://geodesic.mathdoc.fr/item/MT_2015_18_2_a7/

[1] Agranovich M. S., “Ellipticheskie operatory na zamknutykh mnogoobraziyakh”, Differentsialnye uravneniya s chastnymi proizvodnymi, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 63, VINITI, M., 1990, 5–129

[2] Agranovich M. S., “O ryadakh po kornevym vektoram operatorov, opredelyaemykh formami s samosopryazhennoi glavnoi chastyu”, Funkts. analiz i ego pril., 28:3 (1994), 1–21 | Zbl

[3] Agranovich M. S., “Spektralnye zadachi dlya silno ellipticheskikh sistem vtorogo poryadka v oblastyakh s gladkoi i negladkoi granitsei”, UMN, 57:5 (2002), 3–78 | DOI

[4] Agranovich M. S., “Spektralnye zadachi v lipshitsevykh oblastyakh dlya silno ellipticheskikh sistem v banakhovykh prostranstvakh $H^\sigma_p$ i $B^\sigma_p$”, Funkts. analiz i ego pril., 42:4 (2008), 2–23 | DOI | Zbl

[5] Agranovich M. S., “Spektralnye zadachi v lipshitsevykh oblastyakh”, Uravneniya v chastnykh proizvodnykh, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 39, RUDN, M., 2011, 11–35

[6] Agranovich M. S., “Silno ellipticheskie sistemy 2-go poryadka s granichnymi usloviyami na nezamknutoi lipshitsevoi poverkhnosti”, Funkts. analiz i ego pril., 45:1 (2011), 1–15 | DOI | Zbl

[7] Agranovich M. S., “Smeshannye zadachi v lipshitsevoi oblasti dlya silno ellipticheskikh sistem 2-go poryadka”, Funkts. analiz i ego pril., 45:2 (2011), 1–22 | DOI | Zbl

[8] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3(117) (1964), 53–161 | Zbl

[9] Aizenberg L. A., Kytmanov A. M., “O vozmozhnosti golomorfnogo prodolzheniya v oblast funktsii, zadannykh na svyaznom kuske ee granitsy”, Matem. sb., 182:4 (1991), 490–507

[10] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965

[11] Gokhberg I. Ts., Sigal E. I., “Operatornoe obobschenie teoremy o logarifmicheskom vychete i teoremy Rushe”, Matem. sb., 84(126):4 (1971), 603–625

[12] Keldysh M. V., “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh nekotorykh klassov nesamosopryazhennykh uravnenii”, Dokl. AN SSSR, 77 (1951), 11–14 | Zbl

[13] Keldysh M. V., “O polnote sobstvennykh funktsii nekotorykh klassov nesamosopryazhennykh lineinykh operatorov”, UMN, 26:4 (1971), 15–41 | Zbl

[14] Krukovskii N. M., “Teoremy ob $m$-kratnoi polnote sistem obobschennykh iz $W_2^1$ sobstvennykh i assotsiirovannykh funktsii nekotorykh kraevykh zadach dlya ellipticheskikh uravnenii i sistem”, Differents. uravneniya, 12:10 (1976), 1842–1851 | Zbl

[15] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973

[16] Lidskii V. B., “O summiruemosti ryadov po glavnym vektoram nesamosopryazhennykh operatorov”, Tr. MMO, 11, 1962, 3–35

[17] Markus A. S., “O razlozhenii po kornevym vektoram slabo vozmuschennogo samosopryazhennogo operatora”, Dokl. AN SSSR, 142:3 (1962), 538–541 | Zbl

[18] Matsaev V. I., “Ob odnom metode otsenki rezolvent nesamosopryazhennykh operatorov”, Dokl. AN SSSR, 154:5 (1964), 1034–1037 | Zbl

[19] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976

[20] Paltsev B. V., “O smeshannoi zadache s neodnorodnymi granichnymi usloviyami dlya ellipticheskikh s parametrom uravnenii vtorogo poryadka v lipshitsevykh oblastyakh”, Matem. sb., 187:4 (1996), 59–116 | DOI | Zbl

[21] Plamenevskii B. A., Algebry psevdodifferentsialnykh operatorov, Nauka, M., 1986

[22] Slobodetskii L. N., “Obobschennye prostranstva S. L. Soboleva i ikh prilozhenie k kraevym zadacham dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uch. zap. Leningr. gos. ped. in-ta, 197, 1958, 54–112

[23] Tarkhanov N., Shlapunov A. A., “Zadachi Shturma–Liuvillya v vesovykh prostranstvakh v oblastyakh s negladkimi rebrami, I”, Matem. tr., 18:1 (2015), 118–189

[24] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1972

[25] Eskin G. I., Kraevye zadachi dlya ellipticheskikh psevdodifferentsialnykh uravnenii, Nauka, M., 1973

[26] Agmon S., “On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems”, Comm. Pure Appl. Math., 15 (1962), 119–147 | DOI | Zbl

[27] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I”, Comm. Pure Appl. Math., 12 (1959), 623–727 | DOI | Zbl

[28] Agranovich M. S., “Nonselfadjoint elliptic problems on nonsmooth domains”, Russian J. Math. Phys., 2:2 (1994), 139–148 | Zbl

[29] Browder F. E., “On the eigenfunctions and eigenvalues of the general linear elliptic differential operator”, Proc. Nat. Acad. Sci. U.S.A., 39 (1953), 433–439 | DOI | Zbl

[30] Browder F. E., “Estimates and existence theorems for elliptic boundary value problems”, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 365–372 | DOI | Zbl

[31] Browder F. E., “On the spectral theory of strongly elliptic differential operators”, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 1423–1431 | DOI | Zbl

[32] Burenkov V. I., Sobolev Spaces on Domains, Teubner-Texte zur Mathematik, 137, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1998 | DOI | Zbl

[33] Dunford N., Schwartz J. T., Linear Operators, v. II, Spectral Theory. Selfadjoint Operators in Hilbert Space, Intersci. Publ. John Wiley Sons, New York, 1963 | Zbl

[34] Egorov Yu., Kondratiev V., Schulze B. W., “Completeness of eigenfunctions of an elliptic operator on a manifold with conical points”, Russ. J. Math. Phys., 8:3 (2001), 267–274 | Zbl

[35] Grisvard P., Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24, Pitman (Advanced Publishing Program), Boston, MA, 1985 | Zbl

[36] Hartman P., Ordinary Differential Equations, John Wiley Sons, Inc., New York–London–Sydney, 1964 | Zbl

[37] Hedberg L. I., Wolff T. H., “Thin sets in nonlinear potential theory”, Ann. Inst. Fourier (Grenoble), 33:4 (1983), 161–187 | DOI | Zbl

[38] Hörmander L., “Pseudodifferential operators and nonelliptic boundary value problems”, Ann. of Math., 83:1 (1966), 129–209 | DOI | Zbl

[39] Kohn J. J., “Subellipticity of the $\overline\partial$-Neumann problem on pseudoconvex domains: sufficient conditions”, Acta Math., 142:1–2 (1979), 79–122 | DOI | Zbl

[40] Kondratiev V. A., “Completeness of the systems of root functions of elliptic operators in Banach spaces”, Russ. J. Math. Phys., 6:2 (1999), 194–201

[41] Lions J. L., Magenes E., “Problèmes aux limites non homogènes, IV”, Ann. Scuola Norm. Sup. Pisa (3), 15 (1961), 311–326 | Zbl

[42] Lions J. L., Magenes E., Nonhomogeneous Boundary Value Problems and Applications, v. I, Springer-Verlag, New York–Heidelberg–Berlin, 1972

[43] Polkovnikov A., Shlapunov A., “On the spectral properties of a non-coercive mixed problem associated with $\overline\partial$-operator”, Zhurn. SFU. Ser. Matem. i fiz., 6:2 (2013), 247–261

[44] Schechter M., “On the theory of differential boundary problems”, Illinois J. Math., 7 (1963), 232–245 | Zbl

[45] Shestakov I., Shlapunov A., “On the Cauchy problem for operators with injective symbols in the spaces of distributions”, J. Inverse Ill-Posed Probl., 19:1 (2011), 127–150 | DOI | Zbl

[46] Shlapunov A. A., “Spectral decomposition of Green's integrals and existence of $W^{s,2}$-solutions of matrix factorizations of the Laplace operator in a ball”, Rend. Sem. Mat. Univ. Padova, 96 (1996), 237–256 | Zbl

[47] Shlapunov A., Tarkhanov N., “On completeness of root functions of Sturm–Liouville problems with discontinuous boundary operators”, J. Differential Equations, 255:10 (2013), 3305–3337 | DOI | Zbl

[48] Straube E. J., “Harmonic and analytic functions admitting a distribution boundary value”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 11:4 (1984), 559–591 | Zbl

[49] Tarkhanov N., “On the root functions of general elliptic boundary value problems”, Complex Anal. Oper. Theory, 1:1 (2007), 115–141 | DOI | Zbl

[50] Van der Waerden B. L., Algebra, Springer-Verlag, Berlin, 1967 | Zbl

[51] Zaremba S., “Sur un problème mixte relatifà l'équation de Laplace”, Bull. Acad. Sci. Cracovie, 1910, 314–344