Sturm--Liouville problems in weighted spaces in domains with nonsmooth edges.~II
Matematičeskie trudy, Tome 18 (2015) no. 2, pp. 133-204
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a (generally, noncoercive) mixed boundary value problem in a bounded domain $\mathcal{D}$ of ${\mathbb{R}}^n$ for a second order elliptic differential operator $A (x,\partial)$. The differential operator is assumed to be of divergent form in $\mathcal{D}$ and the boundary operator $B (x,\partial)$ is of Robin type on $\partial \mathcal{D}$. The boundary of $\mathcal{D}$ is assumed to be a Lipschitz surface. Besides, we distinguish a closed subset $Y \subset \partial \mathcal{D}$ and control the growth of solutions near $Y$. We prove that the pair $(A,B)$ induces a Fredholm operator $L$ in suitable weighted spaces of Sobolev type, the weight function being a power of the distance to the singular set $Y$. Moreover, we prove the completeness of root functions related to $L$.
@article{MT_2015_18_2_a7,
author = {N. Tarkhanov and A. A. Shlapunov},
title = {Sturm--Liouville problems in weighted spaces in domains with nonsmooth {edges.~II}},
journal = {Matemati\v{c}eskie trudy},
pages = {133--204},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2015_18_2_a7/}
}
TY - JOUR AU - N. Tarkhanov AU - A. A. Shlapunov TI - Sturm--Liouville problems in weighted spaces in domains with nonsmooth edges.~II JO - Matematičeskie trudy PY - 2015 SP - 133 EP - 204 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2015_18_2_a7/ LA - ru ID - MT_2015_18_2_a7 ER -
N. Tarkhanov; A. A. Shlapunov. Sturm--Liouville problems in weighted spaces in domains with nonsmooth edges.~II. Matematičeskie trudy, Tome 18 (2015) no. 2, pp. 133-204. http://geodesic.mathdoc.fr/item/MT_2015_18_2_a7/