Sturm--Liouville problems in weighted spaces in domains with nonsmooth edges.~II
Matematičeskie trudy, Tome 18 (2015) no. 2, pp. 133-204

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a (generally, noncoercive) mixed boundary value problem in a bounded domain $\mathcal{D}$ of ${\mathbb{R}}^n$ for a second order elliptic differential operator $A (x,\partial)$. The differential operator is assumed to be of divergent form in $\mathcal{D}$ and the boundary operator $B (x,\partial)$ is of Robin type on $\partial \mathcal{D}$. The boundary of $\mathcal{D}$ is assumed to be a Lipschitz surface. Besides, we distinguish a closed subset $Y \subset \partial \mathcal{D}$ and control the growth of solutions near $Y$. We prove that the pair $(A,B)$ induces a Fredholm operator $L$ in suitable weighted spaces of Sobolev type, the weight function being a power of the distance to the singular set $Y$. Moreover, we prove the completeness of root functions related to $L$.
@article{MT_2015_18_2_a7,
     author = {N. Tarkhanov and A. A. Shlapunov},
     title = {Sturm--Liouville problems in weighted spaces in domains with nonsmooth {edges.~II}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {133--204},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2015_18_2_a7/}
}
TY  - JOUR
AU  - N. Tarkhanov
AU  - A. A. Shlapunov
TI  - Sturm--Liouville problems in weighted spaces in domains with nonsmooth edges.~II
JO  - Matematičeskie trudy
PY  - 2015
SP  - 133
EP  - 204
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2015_18_2_a7/
LA  - ru
ID  - MT_2015_18_2_a7
ER  - 
%0 Journal Article
%A N. Tarkhanov
%A A. A. Shlapunov
%T Sturm--Liouville problems in weighted spaces in domains with nonsmooth edges.~II
%J Matematičeskie trudy
%D 2015
%P 133-204
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2015_18_2_a7/
%G ru
%F MT_2015_18_2_a7
N. Tarkhanov; A. A. Shlapunov. Sturm--Liouville problems in weighted spaces in domains with nonsmooth edges.~II. Matematičeskie trudy, Tome 18 (2015) no. 2, pp. 133-204. http://geodesic.mathdoc.fr/item/MT_2015_18_2_a7/