Minimal cubature formulas of degree~$3$ for a torus in~${\mathbb R}^3$
Matematičeskie trudy, Tome 18 (2015) no. 2, pp. 49-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct minimal cubature formulas of degree 3 for a torus in ${\mathbb R}^3$. The cases of a degenerate torus with radius $r=1$ and a torus with arbitrary radius $r>1$ are considered separately.
@article{MT_2015_18_2_a3,
     author = {M. V. Noskov and I. M. Fedotova},
     title = {Minimal cubature formulas of degree~$3$ for a torus in~${\mathbb R}^3$},
     journal = {Matemati\v{c}eskie trudy},
     pages = {49--60},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2015_18_2_a3/}
}
TY  - JOUR
AU  - M. V. Noskov
AU  - I. M. Fedotova
TI  - Minimal cubature formulas of degree~$3$ for a torus in~${\mathbb R}^3$
JO  - Matematičeskie trudy
PY  - 2015
SP  - 49
EP  - 60
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2015_18_2_a3/
LA  - ru
ID  - MT_2015_18_2_a3
ER  - 
%0 Journal Article
%A M. V. Noskov
%A I. M. Fedotova
%T Minimal cubature formulas of degree~$3$ for a torus in~${\mathbb R}^3$
%J Matematičeskie trudy
%D 2015
%P 49-60
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2015_18_2_a3/
%G ru
%F MT_2015_18_2_a3
M. V. Noskov; I. M. Fedotova. Minimal cubature formulas of degree~$3$ for a torus in~${\mathbb R}^3$. Matematičeskie trudy, Tome 18 (2015) no. 2, pp. 49-60. http://geodesic.mathdoc.fr/item/MT_2015_18_2_a3/

[1] Mysovskikh I. P., Interpolyatsionnye kubaturnye formuly, Nauka, M., 1981

[2] Noskov M. V., “O priblizhennom integrirovanii po poverkhnosti tora”, Vestn. SPbGU. Cer. 1, 1992, no. 3, 100–102 | Zbl

[3] Noskov M. V., Osipov N. N., “Minimalnye i pochti minimalnye reshetchatye kubaturnye formuly ranga 1, tochnye na trigonometricheskikh mnogochlenakh dvukh peremennykh”, Sib. zhurn. vychisl. matem., 7:2 (2004), 125–134 | Zbl

[4] Noskov M. V., Fedotova I. M., “Ob invariantnykh kubaturnykh formulakh dlya tora v ${\mathbb R}^3$”, Zh. vychisl. matem. i matem. fiz., 43:9 (2003), 1323–1329 | Zbl

[5] Sobolev S. L., Vaskevich V. L., Kubaturnye formuly, Izd-vo In-ta matematiki, Novosibirsk, 1996

[6] Noskov M. V., Schmid H. J., “Minimal cubature formulae of degree 3 for integral over the surface of the torus”, Computing, 57:3 (1996), 213–223 | DOI | Zbl

[7] Noskov M. V., Schmid H. J., “On the number of nodes in $n$-dimensional cubature formulae of degree 5 for integrals over the ball”, J. Comput. Appl. Math., 169:2 (2004), 247–254 | DOI | Zbl

[8] Stroud A. H., Approximate Calculation of Multiple Integrals, Prentice-Hall, Englewood Cliffs, N. J., 1974