Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2015_18_2_a3, author = {M. V. Noskov and I. M. Fedotova}, title = {Minimal cubature formulas of degree~$3$ for a torus in~${\mathbb R}^3$}, journal = {Matemati\v{c}eskie trudy}, pages = {49--60}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2015_18_2_a3/} }
M. V. Noskov; I. M. Fedotova. Minimal cubature formulas of degree~$3$ for a torus in~${\mathbb R}^3$. Matematičeskie trudy, Tome 18 (2015) no. 2, pp. 49-60. http://geodesic.mathdoc.fr/item/MT_2015_18_2_a3/
[1] Mysovskikh I. P., Interpolyatsionnye kubaturnye formuly, Nauka, M., 1981
[2] Noskov M. V., “O priblizhennom integrirovanii po poverkhnosti tora”, Vestn. SPbGU. Cer. 1, 1992, no. 3, 100–102 | Zbl
[3] Noskov M. V., Osipov N. N., “Minimalnye i pochti minimalnye reshetchatye kubaturnye formuly ranga 1, tochnye na trigonometricheskikh mnogochlenakh dvukh peremennykh”, Sib. zhurn. vychisl. matem., 7:2 (2004), 125–134 | Zbl
[4] Noskov M. V., Fedotova I. M., “Ob invariantnykh kubaturnykh formulakh dlya tora v ${\mathbb R}^3$”, Zh. vychisl. matem. i matem. fiz., 43:9 (2003), 1323–1329 | Zbl
[5] Sobolev S. L., Vaskevich V. L., Kubaturnye formuly, Izd-vo In-ta matematiki, Novosibirsk, 1996
[6] Noskov M. V., Schmid H. J., “Minimal cubature formulae of degree 3 for integral over the surface of the torus”, Computing, 57:3 (1996), 213–223 | DOI | Zbl
[7] Noskov M. V., Schmid H. J., “On the number of nodes in $n$-dimensional cubature formulae of degree 5 for integrals over the ball”, J. Comput. Appl. Math., 169:2 (2004), 247–254 | DOI | Zbl
[8] Stroud A. H., Approximate Calculation of Multiple Integrals, Prentice-Hall, Englewood Cliffs, N. J., 1974