Minimal cubature formulas of degree~$3$ for a torus in~${\mathbb R}^3$
Matematičeskie trudy, Tome 18 (2015) no. 2, pp. 49-60

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct minimal cubature formulas of degree 3 for a torus in ${\mathbb R}^3$. The cases of a degenerate torus with radius $r=1$ and a torus with arbitrary radius $r>1$ are considered separately.
@article{MT_2015_18_2_a3,
     author = {M. V. Noskov and I. M. Fedotova},
     title = {Minimal cubature formulas of degree~$3$ for a torus in~${\mathbb R}^3$},
     journal = {Matemati\v{c}eskie trudy},
     pages = {49--60},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2015_18_2_a3/}
}
TY  - JOUR
AU  - M. V. Noskov
AU  - I. M. Fedotova
TI  - Minimal cubature formulas of degree~$3$ for a torus in~${\mathbb R}^3$
JO  - Matematičeskie trudy
PY  - 2015
SP  - 49
EP  - 60
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2015_18_2_a3/
LA  - ru
ID  - MT_2015_18_2_a3
ER  - 
%0 Journal Article
%A M. V. Noskov
%A I. M. Fedotova
%T Minimal cubature formulas of degree~$3$ for a torus in~${\mathbb R}^3$
%J Matematičeskie trudy
%D 2015
%P 49-60
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2015_18_2_a3/
%G ru
%F MT_2015_18_2_a3
M. V. Noskov; I. M. Fedotova. Minimal cubature formulas of degree~$3$ for a torus in~${\mathbb R}^3$. Matematičeskie trudy, Tome 18 (2015) no. 2, pp. 49-60. http://geodesic.mathdoc.fr/item/MT_2015_18_2_a3/