On partial derivatives of multivariate Bernstein polynomials
Matematičeskie trudy, Tome 18 (2015) no. 2, pp. 22-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that Bernstein polynomials for a multivariate function converge to this function along with partial derivatives provided that the latter derivatives exist and are continuous. This result may be useful in some issues of stochastic calculus.
@article{MT_2015_18_2_a1,
     author = {A. Yu. Veretennikov and E. V. Veretennikova},
     title = {On partial derivatives of multivariate {Bernstein} polynomials},
     journal = {Matemati\v{c}eskie trudy},
     pages = {22--38},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2015_18_2_a1/}
}
TY  - JOUR
AU  - A. Yu. Veretennikov
AU  - E. V. Veretennikova
TI  - On partial derivatives of multivariate Bernstein polynomials
JO  - Matematičeskie trudy
PY  - 2015
SP  - 22
EP  - 38
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2015_18_2_a1/
LA  - ru
ID  - MT_2015_18_2_a1
ER  - 
%0 Journal Article
%A A. Yu. Veretennikov
%A E. V. Veretennikova
%T On partial derivatives of multivariate Bernstein polynomials
%J Matematičeskie trudy
%D 2015
%P 22-38
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2015_18_2_a1/
%G ru
%F MT_2015_18_2_a1
A. Yu. Veretennikov; E. V. Veretennikova. On partial derivatives of multivariate Bernstein polynomials. Matematičeskie trudy, Tome 18 (2015) no. 2, pp. 22-38. http://geodesic.mathdoc.fr/item/MT_2015_18_2_a1/

[1] Bernshtein S. N., “Dobavlenie k state E. V. Voronovskoi «Opredelenie asimptoticheskogo vida priblizheniya funktsii polinomami S. N. Bernshteina»”, Sobr. soch., v. 2, Izd-vo AN SSSR, M., 1954, 155–158

[2] Veretennikov A. Yu., Veretennikova E. V., “O skhodimosti chastnykh proizvodnykh mnogomernykh polinomov Bernshteina”, Matematika, informatika, fizika v nauke i obrazovanii, Cb. nauch. tr. k 140-letiyu MPGU, «Prometei», M., 2012, 39–42

[3] Voronovskaya E. V., “Opredelenie asimptoticheskogo vida priblizheniya funktsii polinomami S. N. Bernshteina”, Dokl. AN SSSR. Cer. A, 4 (1932), 74–85

[4] Zorich V. A., Matematicheskii analiz, v. 2, Nauka, M., 1984

[5] Krylov N. V., Vvedenie v teoriyu sluchainykh protsessov, v. 2, Izd-vo MGU, M., 1987

[6] Telyakovskii S. A., “O skorosti priblizheniya funktsii mnogochlenami Bernshteina”, Tr. IMM UrO RAN, 14, no. 3, 2008, 162–169

[7] Tikhonov I. V., Sherstyukov V. B., “Priblizhenie modulya polinomami Bernshteina”, Vestn. Chelyab. un-ta. Ser. Matem. Mekh. Inform., 15:26 (2012), 6–40

[8] Khlodovskii I. N., “O nekotorykh svoistvakh polinomov S. N. Bernshteina”, Tr. pervogo Vsesoyuz. s'ezda matematikov (Kharkov, 1930 g.), ONTI NKTP SSSR, M.–L., 1936, 22

[9] Shiryaev A. N., Veroyatnost, 2-e izd., Nauka, M., 1989

[10] Abel U. and Ivan M., “Asymptotic expansion of the multivariate Bernstein polynomials on a simplex”, Approx. Theory Appl. (N. S.), 16:3 (2000), 85–93 | Zbl

[11] Bernstein S. N., “Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités”, Soobsch. Khark. matem. ob-va. Ser. 2, XIII:1 (1912), 1–2 ; http://topo.math.u-psud.fr/s̃lc/TeX/lcs/legacy_math/bernstein/bernstein_doyle.pdf | Zbl

[12] Floater M. S., “On the convergence of derivatives of Bernstein approximation”, J. Approx. Theory, 134:1 (2005), 130–135 | DOI | Zbl

[13] Lorentz G. G., “Zur Theorie der Polynome von S. Bernstein”, Matem. sb., 2(44):3 (1937), 543–556

[14] Lorentz G. G., Bernstein Polynomials, 2nd ed., AMS Chelsea Publishing Co., New York, 1986

[15] Pop O. T., “Voronovskaja-type theorem for certain GBS operators”, Glas. Mat. Ser. III, 43(63):1 (2008), 179–194 | DOI | Zbl

[16] Popoviciu T., “Sur l'approximation des fonctions convexes d'ordre supérieur”, Mathematica, 10 (1935), 49–54