Sturm--Liouville problems in weighted spaces in domains with nonsmooth edges. I
Matematičeskie trudy, Tome 18 (2015) no. 1, pp. 118-189.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider (in general noncoercive) mixed problems in a bounded domain $D$ in $\mathbb{R}^n$ for a second-order elliptic partial differential operator $A(x,\partial)$. It is assumed that the operator is written in divergent form in $D$, the boundary operator $B(x,\partial)$ is the restriction of a linear combination of the function and its derivatives to $\partial D$ and the boundary of $D$ is a Lipschitz surface. We separate a closed set $Y\subset\partial D$ and control the growth of solutions near $Y$. We prove that the pair $(A,B)$ induces a Fredholm operator $L$ in suitable weighted spaces of Sobolev type, where the weight is a power of the distance to the singular set $Y$. Finally, we prove the completeness of the root functions associated with $L$. The article consists of two parts. The first part published in the present paper, is devoted to exposing the theory of the special weighted Sobolev–Slobodetskii spaces in Lipschitz domains. We obtain theorems on the properties of these spaces; namely, theorems on the interpolation of these spaces, embedding theorems, and theorems about traces. We also study the properties of the weighted spaces defined by some (in general) noncoercive forms.
@article{MT_2015_18_1_a5,
     author = {N. Tarkhanov and A. A. Shlapunov},
     title = {Sturm--Liouville problems in weighted spaces in domains with nonsmooth edges. {I}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {118--189},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2015_18_1_a5/}
}
TY  - JOUR
AU  - N. Tarkhanov
AU  - A. A. Shlapunov
TI  - Sturm--Liouville problems in weighted spaces in domains with nonsmooth edges. I
JO  - Matematičeskie trudy
PY  - 2015
SP  - 118
EP  - 189
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2015_18_1_a5/
LA  - ru
ID  - MT_2015_18_1_a5
ER  - 
%0 Journal Article
%A N. Tarkhanov
%A A. A. Shlapunov
%T Sturm--Liouville problems in weighted spaces in domains with nonsmooth edges. I
%J Matematičeskie trudy
%D 2015
%P 118-189
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2015_18_1_a5/
%G ru
%F MT_2015_18_1_a5
N. Tarkhanov; A. A. Shlapunov. Sturm--Liouville problems in weighted spaces in domains with nonsmooth edges. I. Matematičeskie trudy, Tome 18 (2015) no. 1, pp. 118-189. http://geodesic.mathdoc.fr/item/MT_2015_18_1_a5/

[1] Agranovich M. S., “O ryadakh po kornevym vektoram operatorov, opredelyaemykh formami s samosopryazhennoi glavnoi chastyu”, Funkts. analiz i ego pril., 28:3 (1994), 1–21

[2] Agranovich M. S., “Spektralnye zadachi dlya silno ellipticheskikh sistem vtorogo poryadka v oblastyakh s gladkoi i negladkoi granitsei”, UMN, 57:5 (2002), 3–78 | DOI

[3] Agranovich M. S., “Spektralnye zadachi v lipshitsevykh oblastyakh”, Uravneniya v chastnykh proizvodnykh, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 39, RUDN, M., 2011, 11–35

[4] Berezanskii Yu. M., Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965

[5] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965

[6] Gokhberg I. Ts., Sigal E. I., “Operatornoe obobschenie teoremy o logarifmicheskom vychete i teoremy Rushe”, Matem. sb., 84(126):4 (1971), 603–625

[7] Kondratev V. A., “Kraevye zadachi dlya parabolicheskikh uravnenii v zamknutykh oblastyakh”, Tr. MMO, 15, 1966, 400–451

[8] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973

[9] Mazya V. G., Khavin V. P., “Nelineinaya teoriya potentsiala”, UMN, 27:6 (1972), 67–138

[10] Netrusov Yu. V., “Spektralnyi sintez v prostranstvakh gladkikh funktsii”, Dokl. RAN, 325:5 (1992), 923–925

[11] Slobodetskii L. N., “Obobschennye prostranstva S. L. Soboleva i ikh prilozhenie k kraevym zadacham dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uch. zap. Leningr. gos. ped. in-ta, 197 (1958), 54–112

[12] Tarkhanov N., Shlapunov A. A., “Zadachi Shturma–Liuvillya v vesovykh prostranstvakh v oblastyakh s negladkimi rebrami, II”, Matem. tr., 18:2 (2015) (to appear)

[13] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I”, Comm. Pure Appl. Math., 12 (1959), 623–727 | DOI

[14] Borsuk M., Kondratiev V., Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains, Elsevier, Amsterdam–London, 2006

[15] Dunford N., Schwartz J. T., Linear Operators, v. II, Spectral Theory. Selfadjoint Operators in Hilbert Space, Intersci. Publ. John Wiley Sons, New York, 1963

[16] Hedberg L. I., Wolff T. H., “Thin sets in nonlinear potential theory”, Ann. Inst. Fourier (Grenoble), 33:4 (1983), 161–187 | DOI

[17] Hörmander L., “Pseudodifferential operators and nonelliptic boundary value problems”, Ann. of Math., 83:1 (1966), 129–209 | DOI

[18] Kohn J. J., “Subellipticity of the $\overline\partial$-Neumann problem on pseudoconvex domains: sufficient conditions”, Acta Math., 142:1–2 (1979), 79–122 | DOI

[19] Kohn J. J., Nirenberg L., “Noncoercive boundary value problems”, Comm. Pure Appl. Math., 18 (1965), 443–492 | DOI

[20] Lions J. L., Magenes E., Nonhomogeneous Boundary Value Problems and Applications, v. I, Springer-Verlag, New York–Heidelberg–Berlin, 1972

[21] McLean W., Strongly Elliptic Systems and Boundary Integral Equations, Cambridge Univ. Press, Cambridge, 2000

[22] Nazarov S. A., Plamenevsky B. A., Elliptic Problems in Domains with Piecewise Smooth Boundaries, de Gruyter Expositions in Mathematics, 13, Walter de Gruyter, Berlin et al., 1994

[23] Sato M., Kawai T., Kashiwara M., “Microfunctions and Pseudodifferential Equations”, Proc. Conf. (Katata, 1971), Lecture Notes in Math., 287, Springer, Berlin, 1973, 265–529

[24] Schechter M., “Negative norms and boundary problems”, Ann. of Math. (2), 72:3 (1960), 581–593 | DOI

[25] Schulze B.-W., Shlapunov A. A., Tarkhanov N., “Green integrals on manifolds with cracks”, Ann. Global Anal. Geom., 24:2 (2003), 131–160 | DOI

[26] Shlapunov A. A., Tarkhanov N. N., “Duality by reproducing kernels”, Int. J. Math. Math. Sci., 2003, no. 6, 327–395 | DOI

[27] Shlapunov A., Tarkhanov N., “On completeness of root functions of Sturm–Liouville problems with discontinuous boundary operators”, J. Differential Equations, 255:10 (2013), 3305–3337 | DOI

[28] Tarkhanov N., The Cauchy Problem for Solutions of Elliptic Equations, Mathematical Topics, 7, Akademie Verlag, Berlin, 1995

[29] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978