On some inverse problems for a~linearized system of heat and mass transfer
Matematičeskie trudy, Tome 17 (2014) no. 2, pp. 142-162.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article, we examine well-posedness of the problem on determining the source functions in a linearized system of heat and mass transfer. The overdetermination conditions are the values of concentrations on some surfaces or at separate points of the spatial domain.
@article{MT_2014_17_2_a7,
     author = {E. M. Korotkova and S. G. Pyatkov},
     title = {On some inverse problems for a~linearized system of heat and mass transfer},
     journal = {Matemati\v{c}eskie trudy},
     pages = {142--162},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2014_17_2_a7/}
}
TY  - JOUR
AU  - E. M. Korotkova
AU  - S. G. Pyatkov
TI  - On some inverse problems for a~linearized system of heat and mass transfer
JO  - Matematičeskie trudy
PY  - 2014
SP  - 142
EP  - 162
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2014_17_2_a7/
LA  - ru
ID  - MT_2014_17_2_a7
ER  - 
%0 Journal Article
%A E. M. Korotkova
%A S. G. Pyatkov
%T On some inverse problems for a~linearized system of heat and mass transfer
%J Matematičeskie trudy
%D 2014
%P 142-162
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2014_17_2_a7/
%G ru
%F MT_2014_17_2_a7
E. M. Korotkova; S. G. Pyatkov. On some inverse problems for a~linearized system of heat and mass transfer. Matematičeskie trudy, Tome 17 (2014) no. 2, pp. 142-162. http://geodesic.mathdoc.fr/item/MT_2014_17_2_a7/

[1] Alekseev G. V., Optimizatsiya v statsionarnykh zadachakh teplomassoperenosa i magnitnoi gidrodinamiki, Nauchnyi mir, M., 2010

[2] Alifanov O. M., Artyukhin E. A., Nenarokomov A. V., Obratnye zadachi v issledovanii slozhnogo teploobmena, Yanus-K, M., 2009

[3] Kalinina E. A., “Chislennoe issledovanie obratnoi zadachi vosstanovleniya plotnosti istochnika dvumernogo nestatsionarnogo uravneniya konvektsii-diffuzii”, Dalnevost. matem. zhurn., 5:1 (2004), 89–99

[4] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[5] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[6] Polezhaev V. I., Bune A. V., Verezub N. A. i dr., Matematicheskoe modelirovanie konvektivnogo teplomassoobmena na osnove uravnenii Nave–Stoksa, Nauka, M., 1987 | MR | Zbl

[7] Pyatkov S. G., Samkov M. L., “O nekotorykh klassakh koeffitsientnykh obratnykh zadach dlya parabolicheskikh sistem uravnenii”, Matem. tr., 15:1 (2012), 155–177 | MR

[8] Pyatkov S. G., Tsybikov B. N., “O nekotorykh klassakh evolyutsionnykh obratnykh zadach dlya parabolicheskikh uravnenii”, Sib. matem. zhurn., 50:1 (2009), 175–189 | MR | Zbl

[9] Solonnikov V. A., “O kraevykh zadachakh dlya lineinykh parabolicheskikh sistem differentsialnykh uravnenii obschego vida”, Tr. Mat. in-ta im. V. A. Steklova, 83, 1965, 3–163 | MR | Zbl

[10] Abels H., “Bounded imaginary powers and $H_\infty$-calculus of the Stokes operator in two-dimensional exterior domains”, Math. Z., 251:3 (2005), 589–605 | DOI | MR | Zbl

[11] Abels H., “Reduced and generalized Stokes resolvent equations in asymptotically flat layers. I: Unique solvability”, J. Math. Fluid Mech., 7:2 (2005), 201–222 | DOI | MR | Zbl

[12] Abels H., “Reduced and generalized Stokes resolvent equations in asymptotically flat layers. II: $H_\infty$-Calculus”, J. Math. Fluid Mech., 7:2 (2005), 223–260 | DOI | MR | Zbl

[13] Abels H., “Bounded imaginary powers and $H_\infty$-calculus of the Stokes operator in unbounded domains”, Nonlinear elliptic and parabolic problems, Progr. Nonlinear Differential Equations Appl., 64, Birkhäuser, Basel, 2005, 1–15 | DOI | MR | Zbl

[14] Alifanov O. M., Inverse Heat Transfer Problems, Springer-Verlag, Berlin–Heidelberg–New York, 1994 | Zbl

[15] Amann H., Linear and Quasilinear Parabolic Problems, v. I, Monographs in Mathematics, 89, Birkhäuser, Basel, etc., 1995 | MR | Zbl

[16] Amann H., “Compact embeddings of vector-valued Sobolev and Besov spaces”, Glasnik Mat. Ser. III, 35(55):1 (2000), 161–177 | MR | Zbl

[17] Babeshko O. M., Evdokimova O. V., Evdokimov S. M., “On taking into account the types of sources and settling zones of pollutants”, Dokl. Math., 61:1 (2000), 283–285 | MR | Zbl

[18] Badia A. El., Ha-Duong T., Hamdi A., “Identification of a point source in a linear advection-dispersion-reaction equation: application to a pollution source problem”, Inverse Problems, 21:3 (2005), 1–17 | DOI | MR

[19] Bejan A., Convection Heat Transfer, John Wiley and Sons, Inc., New York, etc., 2004

[20] Belov Yu. Ya., Inverse Problems for Parabolic Equations, VSP, Utrecht, 2002 | MR | Zbl

[21] Căpăṭină A., Stavre R., “A control problem in biconvective flow”, J. Math. Kyoto Univ., 37:4 (1997), 585–595 | MR

[22] Daniel P. Loucks, Eelco van Beek, and et al., Water Resources Systems: Planning and Management, UNESKO Publishing, Paris–Delft, 2005

[23] Dantas L. B., Orlande H. R., Cotta R. M., “An inverse problem of parameter estimation for heat and mass transfer in capillary porous media”, Internat. J. of Heat and Mass Transfer, 46:9 (2003), 1587–1598 | DOI | Zbl

[24] Denk R., Hieber M., Prüss J., $R$-Boundedness, Fourier Multipliers, and Problems of Elliptic and Parabolic Type, Mem. Amer. Math. Soc., 166, no. 788, 2003 | MR

[25] Desch W., Hieber M., Prüss J., “$L^p$-Theory of the Stokes equation in a half space”, J. Evol. Equ., 1:1 (2001), 115–142 | DOI | MR | Zbl

[26] Farwig R., Myong-Hwan R., “Resolvent estimates and maximal regularity in weighted $L^q$-spaces of the Stokes operator in an infinite cylinder”, J. Math. Fluid Mech., 10:3 (2008), 352–387 | DOI | MR | Zbl

[27] Frölich A., “The Stokes operator in weighted $L_q$-spaces. II: Weighted resolvent estimates and maximal $L_p$-regularity”, Math. Ann., 339 (2007), 287–316 | DOI | MR

[28] Giga Y., Sohr H., “On the Stokes operator in exterior domains”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36:1 (1989), 103–130 | MR

[29] Giga Y., Sohr H., “Abstract $L_p$-estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains”, J. Funct. Anal., 102:1 (1991), 72–94 | DOI | MR | Zbl

[30] Isakov V., Inverse Problems for Partial Differential Equations, Appl. Math. Sci., 127, Springer, New York, NY, 2006 | MR | Zbl

[31] Ivanchov M., Inverse Problems for Equations of Parabolic Type, Math. Studies. Monograph Series, 10, VNTL Publishers, Lviv, 2003 | MR | Zbl

[32] Joseph D. D., Stability of Fluid Motions, v. I, Springer Tracts in Natural Philosophy, 27, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | Zbl

[33] Joseph D. D., Stability of Fluid Motions, v. II, Springer Tracts in Natural Philosophy, 28, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | Zbl

[34] Kabanikhin S. I., Inverse and Ill-Posed Problems. Theory and Applications, Inverse and Ill-Posed Problems Series, 55, Walter de Gruyter GmbH Co. KG, Berlin–Boston, 2012 | MR

[35] Kozhanov A. I., Composite Type Equations and Inverse Problems, Inverse and Ill-Posed Problems Series, VSP, Utrecht, 1999 | MR | Zbl

[36] Levandowsky M., Childress W. S., Hunter S. H., Spiegel E. A., “A mathematical model of pattern formation by swimming microorganisms”, J. Protozoology, 22 (1975), 296–306 | DOI

[37] Ozisik M. N., Orlando H. A. B., Inverse Heat Transfer, Taylor Francis, New York, 2000

[38] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, Inc., New York, 1999 | MR

[39] Pyatkov S. G., “On some classes of inverse problems for parabolic equations”, J. Inverse Ill-Posed Probl., 18:8 (2011), 917–934 | DOI | MR

[40] Pyatkov S. G., Tsybikov B. N., “On some classes of inverse problems for parabolic and elliptic equations”, J. Evol. Equ., 11 (2011), 155–186 | DOI | MR | Zbl

[41] Su J., Neto N. G. S., “Two-dimensional inverse heat-conduction problem of source strength estimation in cylindrical rods”, Appl. Math. Model., 25:10 (2001), 861–872 | DOI | Zbl

[42] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978 | MR