Multiple stochastic integrals constructed by special expansions of products of the integrating stochastic processes
Matematičeskie trudy, Tome 17 (2014) no. 2, pp. 61-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with problems of constructing multiple stochastic integrals in the case when the product of increments of the integrating stochastic process admits an expansion as a finite sum of series with random coefficients. This expansion was obtained for a sufficiently wide class including centered Gaussian processes. In the paper, some necessary and sufficient conditions are obtained for the existence of multiple stochastic integrals defined by an expansion of the product of Wiener processes. It was obtained a recurrent representation for the Wiener stochastic integral as an analog of the Hu–Meyer formula.
@article{MT_2014_17_2_a3,
     author = {I. S. Borisov and S. E. Khrushchev},
     title = {Multiple stochastic integrals constructed by special expansions of products of the integrating stochastic processes},
     journal = {Matemati\v{c}eskie trudy},
     pages = {61--83},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2014_17_2_a3/}
}
TY  - JOUR
AU  - I. S. Borisov
AU  - S. E. Khrushchev
TI  - Multiple stochastic integrals constructed by special expansions of products of the integrating stochastic processes
JO  - Matematičeskie trudy
PY  - 2014
SP  - 61
EP  - 83
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2014_17_2_a3/
LA  - ru
ID  - MT_2014_17_2_a3
ER  - 
%0 Journal Article
%A I. S. Borisov
%A S. E. Khrushchev
%T Multiple stochastic integrals constructed by special expansions of products of the integrating stochastic processes
%J Matematičeskie trudy
%D 2014
%P 61-83
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2014_17_2_a3/
%G ru
%F MT_2014_17_2_a3
I. S. Borisov; S. E. Khrushchev. Multiple stochastic integrals constructed by special expansions of products of the integrating stochastic processes. Matematičeskie trudy, Tome 17 (2014) no. 2, pp. 61-83. http://geodesic.mathdoc.fr/item/MT_2014_17_2_a3/

[1] Borisov I. S., Bystrov A. A., “Postroenie stokhasticheskogo integrala ot nesluchainoi funktsii bez usloviya ortogonalnosti integriruyuschei mery”, TVP, 50:1 (2005), 52–80 | DOI | MR | Zbl

[2] Borisov I. S., Bystrov A. A., “Predelnye teoremy dlya kanonicheskikh statistik Mizesa, postroennykh po zavisimym nablyudeniyam”, Sib. matem. zhurn., 47:6 (2006), 1205–1217 | MR | Zbl

[3] Borisov I. S., Khruschev S. E., “Postroenie kratnykh stokhasticheskikh integralov po negaussovym prodakt-meram”, Matem. tr., 15:2 (2012), 37–71 | MR

[4] Gikhman I. I., Skorokhod A. V., Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1965 | MR

[5] Filippova A. A., “Teorema Mizesa o predelnom povedenii funktsionalov ot empiricheskikh funktsii raspredeleniya i ee statisticheskie primeneniya”, TVP, 7:1 (1962), 26–60 | MR | Zbl

[6] Cambanis S., Huang S. T., “Stochastic and multiple Wiener integrals for Gaussian processes”, Ann. Probability, 6 (1978), 585–614 | DOI | MR | Zbl

[7] Dasgupta A., Kallianpur G., “Multiple fractional integrals”, Probab. Theory Related Fields, 115:4 (1999), 505–526 | DOI | MR

[8] Denker M., Grillenberger C., Keller G., “A note on invariance principles for von Mises' statistics”, Metrika, 32:3–4 (1985), 197–214 | DOI | MR | Zbl

[9] Hu Y. Z., Meyer P.-A., “Sur les intégrales multiples de Stratonovitch”, Séminaire de Probabilités, XXII, Lecture Notes in Math., 1321, Springer, Berlin, 1988, 72–81 | DOI | MR

[10] Itô K., “Stochastic integral”, Proc. Imp. Acad. Tokyo, 20 (1944), 519–524 | DOI | MR | Zbl

[11] Itô K., “Multiple Wiener integral”, J. Math. Soc. Japan, 3 (1951), 157–169 | DOI | MR | Zbl

[12] Johnson G. W., Kallianpur G., “Homogeneous chaos, $p$-forms, scaling and the Feynman integral”, Trans. Amer. Math. Soc., 340:2 (1993), 503–548 | MR | Zbl

[13] Major P., Multiple Wiener–Itô Integrals, Lecture Notes in Math., 849, Springer, Berlin, 1981 | MR | Zbl

[14] Nualart D., Zakai M., “On the relation between the Stratonovich and Ogawa integrals”, Ann. Probab., 17 (1989), 1536–1540 | DOI | MR | Zbl

[15] Rosinski J., “On stochastic integration by a series of Wiener integrals”, Appl. Math. Optim., 19:2 (1989), 137–155 | DOI | MR | Zbl

[16] Wiener N., “The homogeneous chaos”, Amer. J. Math., 60:4 (1938), 897–936 | DOI | MR | Zbl