Multiple stochastic integrals constructed by special expansions of products of the integrating stochastic processes
Matematičeskie trudy, Tome 17 (2014) no. 2, pp. 61-83

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with problems of constructing multiple stochastic integrals in the case when the product of increments of the integrating stochastic process admits an expansion as a finite sum of series with random coefficients. This expansion was obtained for a sufficiently wide class including centered Gaussian processes. In the paper, some necessary and sufficient conditions are obtained for the existence of multiple stochastic integrals defined by an expansion of the product of Wiener processes. It was obtained a recurrent representation for the Wiener stochastic integral as an analog of the Hu–Meyer formula.
@article{MT_2014_17_2_a3,
     author = {I. S. Borisov and S. E. Khrushchev},
     title = {Multiple stochastic integrals constructed by special expansions of products of the integrating stochastic processes},
     journal = {Matemati\v{c}eskie trudy},
     pages = {61--83},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2014_17_2_a3/}
}
TY  - JOUR
AU  - I. S. Borisov
AU  - S. E. Khrushchev
TI  - Multiple stochastic integrals constructed by special expansions of products of the integrating stochastic processes
JO  - Matematičeskie trudy
PY  - 2014
SP  - 61
EP  - 83
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2014_17_2_a3/
LA  - ru
ID  - MT_2014_17_2_a3
ER  - 
%0 Journal Article
%A I. S. Borisov
%A S. E. Khrushchev
%T Multiple stochastic integrals constructed by special expansions of products of the integrating stochastic processes
%J Matematičeskie trudy
%D 2014
%P 61-83
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2014_17_2_a3/
%G ru
%F MT_2014_17_2_a3
I. S. Borisov; S. E. Khrushchev. Multiple stochastic integrals constructed by special expansions of products of the integrating stochastic processes. Matematičeskie trudy, Tome 17 (2014) no. 2, pp. 61-83. http://geodesic.mathdoc.fr/item/MT_2014_17_2_a3/