On the essential and the discrete spectra of a~Fredholm type partial integral operator
Matematičeskie trudy, Tome 17 (2014) no. 2, pp. 23-40

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the structure of the essential spectrum of a self-adjoint Fredholm type partial integral operator $H$. We obtain an explicit description of the essential spectrum of $H$ and prove that an eigenvalue of $H$ exists.
@article{MT_2014_17_2_a1,
     author = {G. P. Arzikulov and Yu. Kh. Eshkabilov},
     title = {On the essential and the discrete spectra of {a~Fredholm} type partial integral operator},
     journal = {Matemati\v{c}eskie trudy},
     pages = {23--40},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2014_17_2_a1/}
}
TY  - JOUR
AU  - G. P. Arzikulov
AU  - Yu. Kh. Eshkabilov
TI  - On the essential and the discrete spectra of a~Fredholm type partial integral operator
JO  - Matematičeskie trudy
PY  - 2014
SP  - 23
EP  - 40
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2014_17_2_a1/
LA  - ru
ID  - MT_2014_17_2_a1
ER  - 
%0 Journal Article
%A G. P. Arzikulov
%A Yu. Kh. Eshkabilov
%T On the essential and the discrete spectra of a~Fredholm type partial integral operator
%J Matematičeskie trudy
%D 2014
%P 23-40
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2014_17_2_a1/
%G ru
%F MT_2014_17_2_a1
G. P. Arzikulov; Yu. Kh. Eshkabilov. On the essential and the discrete spectra of a~Fredholm type partial integral operator. Matematičeskie trudy, Tome 17 (2014) no. 2, pp. 23-40. http://geodesic.mathdoc.fr/item/MT_2014_17_2_a1/