On the spectrum of the three-particle Hamiltonian on a~unidimensional lattice
Matematičeskie trudy, Tome 17 (2014) no. 2, pp. 3-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

On a unidimensional lattice, the Hamiltonian of a system of three arbitrary particles is considered (with dispersion relations), where the particles interact pairwise via zero-range (contact) attractive potentials. We prove that the discrete spectrum of the corresponding Schrödinger operator is finite for all values of the total quasimomentum if the masses of two particles are finite. We also prove that the discrete spectrum of the Schrödinger operator is infinite if the masses of two particles in a three-particle system are infinite.
@article{MT_2014_17_2_a0,
     author = {N. M. Aliev and M. E. Muminov},
     title = {On the spectrum of the three-particle {Hamiltonian} on a~unidimensional lattice},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2014_17_2_a0/}
}
TY  - JOUR
AU  - N. M. Aliev
AU  - M. E. Muminov
TI  - On the spectrum of the three-particle Hamiltonian on a~unidimensional lattice
JO  - Matematičeskie trudy
PY  - 2014
SP  - 3
EP  - 22
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2014_17_2_a0/
LA  - ru
ID  - MT_2014_17_2_a0
ER  - 
%0 Journal Article
%A N. M. Aliev
%A M. E. Muminov
%T On the spectrum of the three-particle Hamiltonian on a~unidimensional lattice
%J Matematičeskie trudy
%D 2014
%P 3-22
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2014_17_2_a0/
%G ru
%F MT_2014_17_2_a0
N. M. Aliev; M. E. Muminov. On the spectrum of the three-particle Hamiltonian on a~unidimensional lattice. Matematičeskie trudy, Tome 17 (2014) no. 2, pp. 3-22. http://geodesic.mathdoc.fr/item/MT_2014_17_2_a0/

[1] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Uchebnoe posobie, Izd-vo Leningr. un-ta, L., 1980 | MR

[2] Efimov V. N., “Svyazannye sostoyaniya trekh rezonansno vzaimodeistvuyuschikh chastits”, Yadernaya fizika, 12:5 (1970), 1080–1091

[3] Lakaev S. N., “O beskonechnom chisle trekhchastichnykh svyazannykh sostoyanii sistemy trekh kvantovykh reshetchatykh chastits”, TMF, 89:1 (1991), 94–104 | MR

[4] Lakaev S. N., Muminov M. E., “Suschestvennyi i diskretnyi spektr trekhchastichnogo operatora Shredingera na reshetke”, TMF, 135:3 (2003), 478–503 | DOI | MR | Zbl

[5] Merkurev S. P., Faddeev L. D., Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | MR | Zbl

[6] Muminov M. E., “O beskonechnosti chisla sobstvennykh znachenii na lakune suschestvennogo spektra trekhchastichnogo operatora Shredingera na reshetke”, TMF, 159:2 (2009), 299–317 | DOI | MR | Zbl

[7] Muminov M. E., Aliev N. M., “O spektre trekhchastichnogo operatora Shredingera na odnomernoi reshetke”, TMF, 171:3 (2012), 387–403 | DOI | MR | Zbl

[8] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Mir, M., 1982

[9] Yafaev D. P., “K teorii diskretnogo spektra trekhchastichnogo operatora Shredingera”, Matem. sb., 94(136):4(8) (1974), 567–593 | MR | Zbl

[10] Albeverio S, Lakaev S. N., Muminov Z. I., “Schrödinger operators on lattices. The Efimov effect and discrete spectrum asymptotics”, Ann. Inst. H. Poincaré, 5:4 (2004), 743–772 | MR | Zbl

[11] Amado R. D., Noble J. V., “Efimov's effect: a new pathology of three-particle systems. II”, Phys. Rev. D, 5:8 (1972), 1992–2002 | DOI

[12] Ovchinnikov Yu. N., Sigal I. M., “Number of bound states of three-body systems and Efimov's effect”, Ann. Physics, 123 (1979), 274–295 | DOI | MR

[13] Tamura H., “The Efimov effect of three-body Schrödinger operators”, J. Funct. Anal., 95:2 (1991), 433–459 | DOI | MR | Zbl