Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2014_17_1_a7, author = {A. I. Parfenov}, title = {Discrete {H\"older} estimates for a~parametrix variation}, journal = {Matemati\v{c}eskie trudy}, pages = {175--201}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2014_17_1_a7/} }
A. I. Parfenov. Discrete H\"older estimates for a~parametrix variation. Matematičeskie trudy, Tome 17 (2014) no. 1, pp. 175-201. http://geodesic.mathdoc.fr/item/MT_2014_17_1_a7/
[1] Miranda K., Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, Izd-vo inostr. lit., M., 1957
[2] Parfenov A. I., “Vesovaya apriornaya otsenka v raspryamlyaemykh oblastyakh lokalnogo tipa Lyapunova–Dini”, Sib. elektron. matem. izv., 9 (2012), 65–150 | MR
[3] Parfenov A. I., “Otsenka pogreshnosti obobschennoi formuly M. A. Lavrenteva normoi drobnogo prostranstva Soboleva”, Sib. elektron. matem. izv., 10 (2013), 335–377
[4] Bramanti M., “Singular integrals in nonhomogeneous spaces: $L^2$ and $L^p$ continuity from Hölder estimates”, Rev. Mat. Iberoam., 26:1 (2010), 347–366 | DOI | MR | Zbl
[5] Christ M., Lectures on Singular Integral Operators, CBMS Regional Conf. Ser. Math., 77, AMS, Providence, RI, 1990 | MR | Zbl
[6] Hsiao G. C., Wendland W. L., Boundary Integral Equations, Appl. Math. Sci., 164, Springer-Verlag, Berlin, 2008 | DOI | MR | Zbl
[7] Kalf H., “On E. E. Levi's method of constructing a fundamental solution for second-order elliptic equations”, Rend. Circ. Mat. Palermo (2), 41:2 (1992), 251–294 | DOI | MR | Zbl
[8] Meyer Y., “Continuité sur les espaces de Hölder et de Sobolev des opérateurs définis par des intégrales singulières”, Recent Progress in Fourier Analysis (El Escorial, 1983), North-Holland Math. Stud., 111, Elsevier, Amsterdam, 1985, 145–172 | DOI | MR
[9] Mikhlin S. G., Prössdorf S., Singular Integral Operators, Springer-Verlag, Berlin, 1986 | MR | Zbl
[10] Pomp A., The Boundary-Domain Integral Method for Elliptic Systems. With an Application to Shells, Lecture Notes in Math., 1683, Springer, Berlin, 1998 | MR | Zbl
[11] Torres R. H., Boundedness Results for Operators with Singular Kernels on Distribution Spaces, Mem. Amer. Math. Soc., 90, no. 442, AMS, Providence, 1991 | MR
[12] Vähäkangas A. V., Boundedness of Weakly Singular Integral Operators on Domains, Ann. Acad. Sci. Fenn. Math. Diss., 153, Univ. Helsinki, Helsinki, 2009 | MR | Zbl