Discrete H\"older estimates for a~parametrix variation
Matematičeskie trudy, Tome 17 (2014) no. 1, pp. 175-201.

Voir la notice de l'article provenant de la source Math-Net.Ru

In nonhomogeneous Hölder spaces, we prove continuity of integral operators with kernels from a special class and indicate simplest properties of this class. A parametrix of new type is constructed in a half-space for second order elliptic operators. We establish that, in local Hölder norms, it admits more exact estimate than that for a parametrix close to the Levi function.
@article{MT_2014_17_1_a7,
     author = {A. I. Parfenov},
     title = {Discrete {H\"older} estimates for a~parametrix variation},
     journal = {Matemati\v{c}eskie trudy},
     pages = {175--201},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2014_17_1_a7/}
}
TY  - JOUR
AU  - A. I. Parfenov
TI  - Discrete H\"older estimates for a~parametrix variation
JO  - Matematičeskie trudy
PY  - 2014
SP  - 175
EP  - 201
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2014_17_1_a7/
LA  - ru
ID  - MT_2014_17_1_a7
ER  - 
%0 Journal Article
%A A. I. Parfenov
%T Discrete H\"older estimates for a~parametrix variation
%J Matematičeskie trudy
%D 2014
%P 175-201
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2014_17_1_a7/
%G ru
%F MT_2014_17_1_a7
A. I. Parfenov. Discrete H\"older estimates for a~parametrix variation. Matematičeskie trudy, Tome 17 (2014) no. 1, pp. 175-201. http://geodesic.mathdoc.fr/item/MT_2014_17_1_a7/

[1] Miranda K., Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, Izd-vo inostr. lit., M., 1957

[2] Parfenov A. I., “Vesovaya apriornaya otsenka v raspryamlyaemykh oblastyakh lokalnogo tipa Lyapunova–Dini”, Sib. elektron. matem. izv., 9 (2012), 65–150 | MR

[3] Parfenov A. I., “Otsenka pogreshnosti obobschennoi formuly M. A. Lavrenteva normoi drobnogo prostranstva Soboleva”, Sib. elektron. matem. izv., 10 (2013), 335–377

[4] Bramanti M., “Singular integrals in nonhomogeneous spaces: $L^2$ and $L^p$ continuity from Hölder estimates”, Rev. Mat. Iberoam., 26:1 (2010), 347–366 | DOI | MR | Zbl

[5] Christ M., Lectures on Singular Integral Operators, CBMS Regional Conf. Ser. Math., 77, AMS, Providence, RI, 1990 | MR | Zbl

[6] Hsiao G. C., Wendland W. L., Boundary Integral Equations, Appl. Math. Sci., 164, Springer-Verlag, Berlin, 2008 | DOI | MR | Zbl

[7] Kalf H., “On E. E. Levi's method of constructing a fundamental solution for second-order elliptic equations”, Rend. Circ. Mat. Palermo (2), 41:2 (1992), 251–294 | DOI | MR | Zbl

[8] Meyer Y., “Continuité sur les espaces de Hölder et de Sobolev des opérateurs définis par des intégrales singulières”, Recent Progress in Fourier Analysis (El Escorial, 1983), North-Holland Math. Stud., 111, Elsevier, Amsterdam, 1985, 145–172 | DOI | MR

[9] Mikhlin S. G., Prössdorf S., Singular Integral Operators, Springer-Verlag, Berlin, 1986 | MR | Zbl

[10] Pomp A., The Boundary-Domain Integral Method for Elliptic Systems. With an Application to Shells, Lecture Notes in Math., 1683, Springer, Berlin, 1998 | MR | Zbl

[11] Torres R. H., Boundedness Results for Operators with Singular Kernels on Distribution Spaces, Mem. Amer. Math. Soc., 90, no. 442, AMS, Providence, 1991 | MR

[12] Vähäkangas A. V., Boundedness of Weakly Singular Integral Operators on Domains, Ann. Acad. Sci. Fenn. Math. Diss., 153, Univ. Helsinki, Helsinki, 2009 | MR | Zbl