On the number of negative eigenvalues of a~partial integral operator
Matematičeskie trudy, Tome 17 (2014) no. 1, pp. 128-144

Voir la notice de l'article provenant de la source Math-Net.Ru

We find the lower boundary for the essential spectrum of a Fredholm type partial integral operator $H$. We also obtain an estimate for the number of eigenvalues below this boundary.
@article{MT_2014_17_1_a5,
     author = {R. R. Kucharov and Yu. Kh. Eshkabilov},
     title = {On the number of negative eigenvalues of a~partial integral operator},
     journal = {Matemati\v{c}eskie trudy},
     pages = {128--144},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2014_17_1_a5/}
}
TY  - JOUR
AU  - R. R. Kucharov
AU  - Yu. Kh. Eshkabilov
TI  - On the number of negative eigenvalues of a~partial integral operator
JO  - Matematičeskie trudy
PY  - 2014
SP  - 128
EP  - 144
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2014_17_1_a5/
LA  - ru
ID  - MT_2014_17_1_a5
ER  - 
%0 Journal Article
%A R. R. Kucharov
%A Yu. Kh. Eshkabilov
%T On the number of negative eigenvalues of a~partial integral operator
%J Matematičeskie trudy
%D 2014
%P 128-144
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2014_17_1_a5/
%G ru
%F MT_2014_17_1_a5
R. R. Kucharov; Yu. Kh. Eshkabilov. On the number of negative eigenvalues of a~partial integral operator. Matematičeskie trudy, Tome 17 (2014) no. 1, pp. 128-144. http://geodesic.mathdoc.fr/item/MT_2014_17_1_a5/