On the definition of the small index property
Matematičeskie trudy, Tome 17 (2014) no. 1, pp. 123-127
Cet article a éte moissonné depuis la source Math-Net.Ru
For countable infinite structures, two definitions of the small index property are known. One of them contains the words "at most $\omega$" while the other reads "less than $2^\omega$". In the present article, we explain in what sense there is no big difference between the two definitions and suggest a generalization to arbitrary infinite structures.
@article{MT_2014_17_1_a4,
author = {K. Zh. Kudaǐbergenov},
title = {On the definition of the small index property},
journal = {Matemati\v{c}eskie trudy},
pages = {123--127},
year = {2014},
volume = {17},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2014_17_1_a4/}
}
K. Zh. Kudaǐbergenov. On the definition of the small index property. Matematičeskie trudy, Tome 17 (2014) no. 1, pp. 123-127. http://geodesic.mathdoc.fr/item/MT_2014_17_1_a4/
[1] Burgess J. P., “Forcing”, Handbook of Mathematical Logic, North-Holland, 1977 | MR
[2] Hodges W., Model Theory, Encyclopedia of Mathematics and Its Applications, 42, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[3] Lascar D., Shelah S., “Uncountable saturated structures have the small index property”, Bull. London Math. Soc., 25:2 (1993), 125–131 | DOI | MR | Zbl
[4] Macpherson D., A survey of Homogeneous Structures, Preprint, http://www.amsta.leeds.ac.uk/pure/staff/macpherson/macpherson.html | MR