The generalized It\^o--Venttsel' formula in the case of a~noncentered Poisson measure, a~stochastic first integral, and a~first integral
Matematičeskie trudy, Tome 17 (2014) no. 1, pp. 99-122

Voir la notice de l'article provenant de la source Math-Net.Ru

We deduce an analog of the Itô–Venttsel' formula for an Itô system of generalized stochastic differential equations (GSDE) with noncentered measure on the basis of a stochastic kernel of an integral invariant. We construct a system of GSDE whose solution is a kernel of an integral invariant connected with a solution to GSDE with noncentered measure. We introduce the notion of a stochastic first integral of a system of GSDE with noncentered measure and find conditions under which a random function is a first integral of a given system of GSDE.
@article{MT_2014_17_1_a3,
     author = {E. V. Karachanskaya},
     title = {The generalized {It\^o--Venttsel'} formula in the case of a~noncentered {Poisson} measure, a~stochastic first integral, and a~first integral},
     journal = {Matemati\v{c}eskie trudy},
     pages = {99--122},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2014_17_1_a3/}
}
TY  - JOUR
AU  - E. V. Karachanskaya
TI  - The generalized It\^o--Venttsel' formula in the case of a~noncentered Poisson measure, a~stochastic first integral, and a~first integral
JO  - Matematičeskie trudy
PY  - 2014
SP  - 99
EP  - 122
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2014_17_1_a3/
LA  - ru
ID  - MT_2014_17_1_a3
ER  - 
%0 Journal Article
%A E. V. Karachanskaya
%T The generalized It\^o--Venttsel' formula in the case of a~noncentered Poisson measure, a~stochastic first integral, and a~first integral
%J Matematičeskie trudy
%D 2014
%P 99-122
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2014_17_1_a3/
%G ru
%F MT_2014_17_1_a3
E. V. Karachanskaya. The generalized It\^o--Venttsel' formula in the case of a~noncentered Poisson measure, a~stochastic first integral, and a~first integral. Matematičeskie trudy, Tome 17 (2014) no. 1, pp. 99-122. http://geodesic.mathdoc.fr/item/MT_2014_17_1_a3/