The generalized It\^o--Venttsel' formula in the case of a~noncentered Poisson measure, a~stochastic first integral, and a~first integral
Matematičeskie trudy, Tome 17 (2014) no. 1, pp. 99-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

We deduce an analog of the Itô–Venttsel' formula for an Itô system of generalized stochastic differential equations (GSDE) with noncentered measure on the basis of a stochastic kernel of an integral invariant. We construct a system of GSDE whose solution is a kernel of an integral invariant connected with a solution to GSDE with noncentered measure. We introduce the notion of a stochastic first integral of a system of GSDE with noncentered measure and find conditions under which a random function is a first integral of a given system of GSDE.
@article{MT_2014_17_1_a3,
     author = {E. V. Karachanskaya},
     title = {The generalized {It\^o--Venttsel'} formula in the case of a~noncentered {Poisson} measure, a~stochastic first integral, and a~first integral},
     journal = {Matemati\v{c}eskie trudy},
     pages = {99--122},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2014_17_1_a3/}
}
TY  - JOUR
AU  - E. V. Karachanskaya
TI  - The generalized It\^o--Venttsel' formula in the case of a~noncentered Poisson measure, a~stochastic first integral, and a~first integral
JO  - Matematičeskie trudy
PY  - 2014
SP  - 99
EP  - 122
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2014_17_1_a3/
LA  - ru
ID  - MT_2014_17_1_a3
ER  - 
%0 Journal Article
%A E. V. Karachanskaya
%T The generalized It\^o--Venttsel' formula in the case of a~noncentered Poisson measure, a~stochastic first integral, and a~first integral
%J Matematičeskie trudy
%D 2014
%P 99-122
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2014_17_1_a3/
%G ru
%F MT_2014_17_1_a3
E. V. Karachanskaya. The generalized It\^o--Venttsel' formula in the case of a~noncentered Poisson measure, a~stochastic first integral, and a~first integral. Matematičeskie trudy, Tome 17 (2014) no. 1, pp. 99-122. http://geodesic.mathdoc.fr/item/MT_2014_17_1_a3/

[1] Venttsel A. D., “Ob uravneniyakh teorii uslovnykh markovskikh protsessov”, TVP, 10:2 (1965), 390–393

[2] Gikhman I. I., Skorokhod A. V., Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968 | MR | Zbl

[3] Dubko V. A., Pervyi integral sistemy stokhasticheskikh differentsialnykh uravnenii, Preprint, Izd-vo AN USSR, In-t matematiki, Kiev, 1978 http://openevolvingsystems.narod.ru/indexUkr.htm

[4] Dubko V. A., “Integralnye invarianty dlya odnogo klassa sistem stokhasticheskikh differentsialnykh uravnenii”, Dokl. AN USSR. Ser. A, 1984, no. 1, 18–21 | Zbl

[5] Dubko V. A., Voprosy teorii i primeneniya stokhasticheskikh differentsialnykh uravnenii, DVO AN SSSR, Vladivostok, 1989 | MR

[6] Dubko V. A., “Integralnye invarianty uravnenii Ito i ikh svyaz s nekotorymi zadachami teorii sluchainykh protsessov”, Dokl. NAN Ukrainy, 2002, no. 1, 24–29 | MR | Zbl

[7] Dubko V. A., “Otkrytye evolyutsioniruyuschie sistemy”, Pervaya mezhdunar. nauchno-tekhn. konf. “Otkrytye evolyutsioniruyuschie sistemy” (26–27 aprelya 2002 g.), Tez. dokl., VNZ VMURoL, Kiev, 2002, 14–31 http://openevolvingsystems.narod.ru/indexUkr.htm

[8] Dubko V. A., Chalykh E. V., “Postroenie analiticheskogo resheniya dlya odnogo klassa uravnenii tipa Lanzhevena s ortogonalnymi sluchainymi vozdeistviyami”, Ukr. mat. zhurn., 50:4 (1998), 666–668 | MR | Zbl

[9] Erugin N. P., “Postroenie vsego mnozhestva differentsialnykh uravnenii, imeyuschikh zadannuyu integralnuyu krivuyu”, Prikl. matem. i mekh., 16:6 (1952), 658–670

[10] Zubov V. I., Dinamika upravlyaemykh sistem, Ucheb. posobie dlya vuzov, Vysshaya shkola, M., 1982 | MR

[11] Karachanskaya E. V., “Ob odnom obobschenii formuly Ito–Venttselya”, Obozrenie prikl. i prom. matem., 18:2 (2011), 494–496

[12] Karachanskaya E. V., “Postroenie programmnykh upravlenii s veroyatnostyu 1 dlya dinamicheskoi sistemy s puassonovskimi vozmuscheniyami”, Vestn. Tikhookeanskogo gosuniversiteta, 2011, no. 2(21), 51–60

[13] Karachanskaya E. V., “Postroenie mnozhestva differentsialnykh uravnenii s zadannym mnozhestvom pervykh integralov”, Vestn. Tikhookeanskogo gosuniversiteta, 2011, no. 3(22), 47–56

[14] Krylov N. V., Rozovskii B. L., “Stokhasticheskie differentsialnye uravneniya v chastnykh proizvodnykh i diffuzionnye protsessy”, UMN, 37:6(228) (1982), 75–95 | MR | Zbl

[15] Kunita X., Vatanabe Sh., “O martingalakh, integriruemykh s kvadratom”, Matematika, 15:1 (1971), 66–102 | Zbl

[16] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, 3-e izd., Editorial URSS, M., 2004

[17] Puankare A., Izbrannye trudy v trekh tomakh, v. II, Novye metody nebesnoi mekhaniki. Topologiya. Teoriya chisel, Nauka, M., 1972 | MR

[18] Rozovskii B. L., “O formule Ito–Venttselya”, Vestnik MGU. Ser. mat. i mekh., 1973, no. 1, 26–32 | MR | Zbl

[19] Chalykh E. V., “Obobschenie modelei brounovskogo dvizheniya so sluchainymi ortogonalnymi vozdeistviyami”, Vtoraya mezhdunar. nauchno-tekhn. konf. “Otkrytye evolyutsioniruyuschie sistemy” (1–30 dekabrya 2003 g.), Tez. dokl., VNZ VMURoL, Kiev, 2004, 90–93 http://openevolvingsystems.narod.ru/2004_OESII/2004_OESII.pdf

[20] Chalykh E. V., “Programmnoe upravlenie s veroyatnostyu 1 dlya otkrytykh sistem”, Obozrenie prikl. i prom. matem., 14:2 (2007), 253–254 | MR

[21] Bismut J. M., “A generalized formula of Itô and some other properties of stochastic flows”, Z. Wahrsch. Verw. Gebiete, 55:3 (1981), 331–350 | DOI | MR | Zbl

[22] Itô K., “Stochastic differential equations in a differentiable manifold”, Nagoya Math. J., 1 (1950), 35–47 | MR | Zbl

[23] Krylov N. V., “On the Itô–Wentzell formula for distribution-valued processes and related topics”, Probab. Theory Related Fields, 150:1–2 (2011), 295–319 | DOI | MR | Zbl

[24] Ocone D., Pardoux E., “A generalized Itô–Ventzell formula”, Ann. Inst. H. Poincaré Sect. B, 25:1 (1989), 39–71 | MR | Zbl

[25] Øksendal B., Zhang T., “The Itô–Ventzell formula and forward stochastic differential equations driven by Poisson random measures”, Osaka J. Math., 44 (2007), 207–230 | MR