Boundary behavior of functions from Sobolev classes defined on domains with exterior peak
Matematičeskie trudy, Tome 17 (2014) no. 1, pp. 70-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish an invertible characteristic of the boundary behavior of functions from Sobolev spaces defined on a space domain having a vertex of exterior peak on the boundary. The boundary is assumed sufficiently smooth in a neighborhood of the peak vertex. The description of the traces on the boundary is given with the use of weighted Besov spaces.
@article{MT_2014_17_1_a2,
     author = {M. Yu. Vasil'chik and I. M. Pupyshev},
     title = {Boundary behavior of functions from {Sobolev} classes defined on domains with exterior peak},
     journal = {Matemati\v{c}eskie trudy},
     pages = {70--98},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2014_17_1_a2/}
}
TY  - JOUR
AU  - M. Yu. Vasil'chik
AU  - I. M. Pupyshev
TI  - Boundary behavior of functions from Sobolev classes defined on domains with exterior peak
JO  - Matematičeskie trudy
PY  - 2014
SP  - 70
EP  - 98
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2014_17_1_a2/
LA  - ru
ID  - MT_2014_17_1_a2
ER  - 
%0 Journal Article
%A M. Yu. Vasil'chik
%A I. M. Pupyshev
%T Boundary behavior of functions from Sobolev classes defined on domains with exterior peak
%J Matematičeskie trudy
%D 2014
%P 70-98
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2014_17_1_a2/
%G ru
%F MT_2014_17_1_a2
M. Yu. Vasil'chik; I. M. Pupyshev. Boundary behavior of functions from Sobolev classes defined on domains with exterior peak. Matematičeskie trudy, Tome 17 (2014) no. 1, pp. 70-98. http://geodesic.mathdoc.fr/item/MT_2014_17_1_a2/

[1] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[2] Vasilchik M. Yu., “O sledakh funktsii iz prostranstv Soboleva $W^1_p$, opredelennykh v oblastyakh s nelipshitsevoi granitsei”, Sovremennye problemy geometrii i analiza, Tr. In-ta matematiki SO AN SSSR, 14, Nauka, Novosibirsk, 1989, 9–45 | MR

[3] Vasilchik M. Yu., “Granichnye svoistva funktsii iz prostranstva Soboleva, opredelennykh v ploskoi oblasti s uglovymi tochkami”, Sib. matem. zhurn., 36:4 (1995), 787–804 | MR | Zbl

[4] Vasilchik M. Yu., “O granichnom povedenii funktsii iz prostranstv Soboleva, opredelennykh v ploskoi oblasti s vershinoi pika na granitse”, Matem. tr., 6:1 (2003), 3–27 | MR | Zbl

[5] Vasilchik M. Yu., Pupyshev I. M., “Integralnoe predstavlenie i granichnoe povedenie funktsii, opredelennykh v oblasti s pikom”, Matem. tr., 13:1 (2010), 23–62 | MR

[6] Mazya V. G., “O funktsiyakh s konechnym integralom Dirikhle v oblasti s vershinoi pika na granitse”, Zap. nauchn. seminarov LOMI, 126, Mat. in-t im. V. A. Steklova. Leningr. otd-nie, M.–L., 1983, 117–137 | MR | Zbl

[7] Mazya V. G., Netrusov Yu. V., Poborchii S. V., “Granichnye znacheniya funktsii iz prostranstv Soboleva v nekotorykh nelipshitsevykh oblastyakh”, Algebra i analiz, 11 (1999), 141–170 | MR | Zbl

[8] Mazya V. G., Poborchii S. V., “O sledakh funktsii s summiruemym gradientom v oblasti s vershinoi pika na granitse”, Matem. zametki, 45:1 (1989), 57–65 | MR | Zbl

[9] Mazya V. G., Poborchii S. V., “Sledy funktsii iz prostranstv Soboleva na granitse oblasti s pikom”, Sovremennye problemy geometrii i analiza, Tr. In-ta matematiki SO AN SSSR, 14, Nauka, Novosibirsk, 1989, 182–208 | MR

[10] Faddeev D. K., Vulikh B. Z., Uraltseva N. N., Izbrannye glavy analiza i vysshei algebry, Izd-vo LGU, L., 1981 | Zbl

[11] Yakovlev G. N., “Granichnye svoistva funktsii klassa $W_p^{(l)}$ na oblastyakh s uglovymi tochkami”, Dokl. AN SSSR, 140:1 (1961), 73–76 | MR | Zbl

[12] Yakovlev G. N., “Zadacha Dirikhle dlya oblastei s nelipshitsevoi granitsei”, Differents. uravneniya, 1:8 (1965), 1085–1098 | Zbl

[13] Yakovlev G. N., “O sledakh funktsii iz prostranstva $W^l_p$ na kusochno-gladkikh poverkhnostyakh”, Matem. sb., 74(116):4 (1967), 526–543 | MR | Zbl

[14] Jonsson A., Wallin H., “A Whitney extension theorem in $L_p$ and Besov spaces”, Ann. Inst. Fourier (Grenoble), 28:1 (1978), 139–192 | DOI | MR | Zbl