Application of M-matrices in construction of exponential estimates for solutions to the Cauchy problem for systems of linear difference and differential equations
Matematičeskie trudy, Tome 16 (2013) no. 2, pp. 111-141
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a family of exponential estimates for solutions to the Cauchy problem for systems of linear difference and ordinary differential equations and differential equations with aftereffect whose matrices are of a special form. We use the monotone method and properties of nondegenerate M-matrices. We also study some specific examples of systems of equations.
@article{MT_2013_16_2_a7,
author = {N. V. Pertsev},
title = {Application of {M-matrices} in construction of exponential estimates for solutions to the {Cauchy} problem for systems of linear difference and differential equations},
journal = {Matemati\v{c}eskie trudy},
pages = {111--141},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2013_16_2_a7/}
}
TY - JOUR AU - N. V. Pertsev TI - Application of M-matrices in construction of exponential estimates for solutions to the Cauchy problem for systems of linear difference and differential equations JO - Matematičeskie trudy PY - 2013 SP - 111 EP - 141 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2013_16_2_a7/ LA - ru ID - MT_2013_16_2_a7 ER -
%0 Journal Article %A N. V. Pertsev %T Application of M-matrices in construction of exponential estimates for solutions to the Cauchy problem for systems of linear difference and differential equations %J Matematičeskie trudy %D 2013 %P 111-141 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MT_2013_16_2_a7/ %G ru %F MT_2013_16_2_a7
N. V. Pertsev. Application of M-matrices in construction of exponential estimates for solutions to the Cauchy problem for systems of linear difference and differential equations. Matematičeskie trudy, Tome 16 (2013) no. 2, pp. 111-141. http://geodesic.mathdoc.fr/item/MT_2013_16_2_a7/