On the mean value property for polyharmonic functions in the ball
Matematičeskie trudy, Tome 16 (2013) no. 2, pp. 69-88
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain the mean value property for the normal derivatives of a polyharmonic function with respect to the unit sphere. We find the values of a polyharmonic function and its Laplacians at the center of the unit ball expressed via the integrals of the normal derivatives of this function over the unit sphere.
@article{MT_2013_16_2_a4,
author = {V. V. Karachik},
title = {On the mean value property for polyharmonic functions in the ball},
journal = {Matemati\v{c}eskie trudy},
pages = {69--88},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2013_16_2_a4/}
}
V. V. Karachik. On the mean value property for polyharmonic functions in the ball. Matematičeskie trudy, Tome 16 (2013) no. 2, pp. 69-88. http://geodesic.mathdoc.fr/item/MT_2013_16_2_a4/