Conditional moderately large deviation principles for the trajectories of random walks and processes with independent increments
Matematičeskie trudy, Tome 16 (2013) no. 2, pp. 45-68

Voir la notice de l'article provenant de la source Math-Net.Ru

We extend the large deviation principles for random walks and processes with independent increments to the case of conditional probabilities given that the position of the trajectory at the last time moment is localized in a neighborhood of some point. As a corollary, we obtain a moderately large deviation principle for empirical distributions (an analog of Sanov's theorem).
@article{MT_2013_16_2_a3,
     author = {A. A. Borovkov and A. A. Mogul'skiǐ},
     title = {Conditional moderately large deviation principles for the trajectories of random walks and processes with independent increments},
     journal = {Matemati\v{c}eskie trudy},
     pages = {45--68},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2013_16_2_a3/}
}
TY  - JOUR
AU  - A. A. Borovkov
AU  - A. A. Mogul'skiǐ
TI  - Conditional moderately large deviation principles for the trajectories of random walks and processes with independent increments
JO  - Matematičeskie trudy
PY  - 2013
SP  - 45
EP  - 68
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2013_16_2_a3/
LA  - ru
ID  - MT_2013_16_2_a3
ER  - 
%0 Journal Article
%A A. A. Borovkov
%A A. A. Mogul'skiǐ
%T Conditional moderately large deviation principles for the trajectories of random walks and processes with independent increments
%J Matematičeskie trudy
%D 2013
%P 45-68
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2013_16_2_a3/
%G ru
%F MT_2013_16_2_a3
A. A. Borovkov; A. A. Mogul'skiǐ. Conditional moderately large deviation principles for the trajectories of random walks and processes with independent increments. Matematičeskie trudy, Tome 16 (2013) no. 2, pp. 45-68. http://geodesic.mathdoc.fr/item/MT_2013_16_2_a3/