Conditional moderately large deviation principles for the trajectories of random walks and processes with independent increments
Matematičeskie trudy, Tome 16 (2013) no. 2, pp. 45-68
Voir la notice de l'article provenant de la source Math-Net.Ru
We extend the large deviation principles for random walks and processes with independent increments to the case of conditional probabilities given that the position of the trajectory at the last time moment is localized in a neighborhood of some point. As a corollary, we obtain a moderately large deviation principle for empirical distributions (an analog of Sanov's theorem).
@article{MT_2013_16_2_a3,
author = {A. A. Borovkov and A. A. Mogul'skiǐ},
title = {Conditional moderately large deviation principles for the trajectories of random walks and processes with independent increments},
journal = {Matemati\v{c}eskie trudy},
pages = {45--68},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2013_16_2_a3/}
}
TY - JOUR AU - A. A. Borovkov AU - A. A. Mogul'skiǐ TI - Conditional moderately large deviation principles for the trajectories of random walks and processes with independent increments JO - Matematičeskie trudy PY - 2013 SP - 45 EP - 68 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2013_16_2_a3/ LA - ru ID - MT_2013_16_2_a3 ER -
%0 Journal Article %A A. A. Borovkov %A A. A. Mogul'skiǐ %T Conditional moderately large deviation principles for the trajectories of random walks and processes with independent increments %J Matematičeskie trudy %D 2013 %P 45-68 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MT_2013_16_2_a3/ %G ru %F MT_2013_16_2_a3
A. A. Borovkov; A. A. Mogul'skiǐ. Conditional moderately large deviation principles for the trajectories of random walks and processes with independent increments. Matematičeskie trudy, Tome 16 (2013) no. 2, pp. 45-68. http://geodesic.mathdoc.fr/item/MT_2013_16_2_a3/