An optimal boundary control problem for the motion equations of polymer solutions
Matematičeskie trudy, Tome 16 (2013) no. 2, pp. 13-27

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an optimal boundary control problem for stationary equations of a model of the motion of weakly concentrated water solutions of polymers. Sufficient conditions are obtained for the solvability of the problem. Some properties of the set of optimal solutions are established.
@article{MT_2013_16_2_a1,
     author = {E. S. Baranovskiǐ},
     title = {An optimal boundary control problem for the motion equations of polymer solutions},
     journal = {Matemati\v{c}eskie trudy},
     pages = {13--27},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2013_16_2_a1/}
}
TY  - JOUR
AU  - E. S. Baranovskiǐ
TI  - An optimal boundary control problem for the motion equations of polymer solutions
JO  - Matematičeskie trudy
PY  - 2013
SP  - 13
EP  - 27
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2013_16_2_a1/
LA  - ru
ID  - MT_2013_16_2_a1
ER  - 
%0 Journal Article
%A E. S. Baranovskiǐ
%T An optimal boundary control problem for the motion equations of polymer solutions
%J Matematičeskie trudy
%D 2013
%P 13-27
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2013_16_2_a1/
%G ru
%F MT_2013_16_2_a1
E. S. Baranovskiǐ. An optimal boundary control problem for the motion equations of polymer solutions. Matematičeskie trudy, Tome 16 (2013) no. 2, pp. 13-27. http://geodesic.mathdoc.fr/item/MT_2013_16_2_a1/