Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2013_16_1_a9, author = {O. E. Yaremko}, title = {A~generalization of the {Poisson} integral formula for the functions harmonic and biharmonic in a~ball}, journal = {Matemati\v{c}eskie trudy}, pages = {189--197}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2013_16_1_a9/} }
TY - JOUR AU - O. E. Yaremko TI - A~generalization of the Poisson integral formula for the functions harmonic and biharmonic in a~ball JO - Matematičeskie trudy PY - 2013 SP - 189 EP - 197 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2013_16_1_a9/ LA - ru ID - MT_2013_16_1_a9 ER -
O. E. Yaremko. A~generalization of the Poisson integral formula for the functions harmonic and biharmonic in a~ball. Matematičeskie trudy, Tome 16 (2013) no. 1, pp. 189-197. http://geodesic.mathdoc.fr/item/MT_2013_16_1_a9/
[1] Bavrin I. I., Operatornyi metod v kompleksnom analize, “Prometei”, M., 1991 | MR | Zbl
[2] Bavrin I. I., “Obratnaya zadacha dlya integralnoi formuly Koshi v koltse”, Dokl. RAN, 428:2 (2009), 151–152 | MR | Zbl
[3] Vladimirov V. S., Zharinov V. V., Uravneniya matematicheskoi fiziki, Fizmatlit, M., 2004
[4] Ditkin V. A., Prudnikov A. P., Integralnye preobrazovaniya i operatsionnoe ischislenie, Spravochnaya matematicheskaya biblioteka, 5, Nauka, M., 1974 | MR
[5] Nikiforov A. F., Uvarov V. B., Spetsialnye funktsii matematicheskoi fiziki, 2-e izd., Nauka, M., 1984 | MR
[6] Uroev V. M., Uravneniya matematicheskoi fiziki, IF “Yauza”, M., 1998
[7] Abramowitz M., Stegun I. A. (Eds.), “Orthogonal polynomials”, Ch. 22, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, John Wiley and Sons, New York, etc., 1972, 771–802 | MR
[8] Akhiezer N. I., The Classical Moment Problem and Some Related Questions in Analysis, Hafner Publishing Co., New York, 1965 | MR
[9] Belov Yu. Ya., Inverse Problems for Partial Differential Equations, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2002 | MR | Zbl
[10] Lavrent'ev M. A., Variational Methods for Boundary Value Problems: for Systems of Elliptic Equations, Reprint, Dover Publications, USA, 2006 | MR
[11] Weisstein Eric W., Biharmonic Equation, From MathWorld–A Wolfram Web Resource http://mathworld.wolfram.com/BiharmonicEquation.html