A~generalization of the Poisson integral formula for the functions harmonic and biharmonic in a~ball
Matematičeskie trudy, Tome 16 (2013) no. 1, pp. 189-197.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an analytic solution to the problem of extension to the unit $N$-dimensional ball of the potential on its values on an interior sphere. The formula generalizes the conventional Poisson formula. Bavrin's results obtained for the two-dimensional case by methods of function theory are transferred to the $N$-dimensional case ($N\ge3$). We also exhibit a solution to a similar extension problem for some operator expressions depending on a potential known on an interior sphere. A connection is established between solutions to the moment problem on a segment and on a semiaxis.
@article{MT_2013_16_1_a9,
     author = {O. E. Yaremko},
     title = {A~generalization of the {Poisson} integral formula for the functions harmonic and biharmonic in a~ball},
     journal = {Matemati\v{c}eskie trudy},
     pages = {189--197},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2013_16_1_a9/}
}
TY  - JOUR
AU  - O. E. Yaremko
TI  - A~generalization of the Poisson integral formula for the functions harmonic and biharmonic in a~ball
JO  - Matematičeskie trudy
PY  - 2013
SP  - 189
EP  - 197
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2013_16_1_a9/
LA  - ru
ID  - MT_2013_16_1_a9
ER  - 
%0 Journal Article
%A O. E. Yaremko
%T A~generalization of the Poisson integral formula for the functions harmonic and biharmonic in a~ball
%J Matematičeskie trudy
%D 2013
%P 189-197
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2013_16_1_a9/
%G ru
%F MT_2013_16_1_a9
O. E. Yaremko. A~generalization of the Poisson integral formula for the functions harmonic and biharmonic in a~ball. Matematičeskie trudy, Tome 16 (2013) no. 1, pp. 189-197. http://geodesic.mathdoc.fr/item/MT_2013_16_1_a9/

[1] Bavrin I. I., Operatornyi metod v kompleksnom analize, “Prometei”, M., 1991 | MR | Zbl

[2] Bavrin I. I., “Obratnaya zadacha dlya integralnoi formuly Koshi v koltse”, Dokl. RAN, 428:2 (2009), 151–152 | MR | Zbl

[3] Vladimirov V. S., Zharinov V. V., Uravneniya matematicheskoi fiziki, Fizmatlit, M., 2004

[4] Ditkin V. A., Prudnikov A. P., Integralnye preobrazovaniya i operatsionnoe ischislenie, Spravochnaya matematicheskaya biblioteka, 5, Nauka, M., 1974 | MR

[5] Nikiforov A. F., Uvarov V. B., Spetsialnye funktsii matematicheskoi fiziki, 2-e izd., Nauka, M., 1984 | MR

[6] Uroev V. M., Uravneniya matematicheskoi fiziki, IF “Yauza”, M., 1998

[7] Abramowitz M., Stegun I. A. (Eds.), “Orthogonal polynomials”, Ch. 22, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, John Wiley and Sons, New York, etc., 1972, 771–802 | MR

[8] Akhiezer N. I., The Classical Moment Problem and Some Related Questions in Analysis, Hafner Publishing Co., New York, 1965 | MR

[9] Belov Yu. Ya., Inverse Problems for Partial Differential Equations, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2002 | MR | Zbl

[10] Lavrent'ev M. A., Variational Methods for Boundary Value Problems: for Systems of Elliptic Equations, Reprint, Dover Publications, USA, 2006 | MR

[11] Weisstein Eric W., Biharmonic Equation, From MathWorld–A Wolfram Web Resource http://mathworld.wolfram.com/BiharmonicEquation.html