On dense free subgroups of the automorphism group
Matematičeskie trudy, Tome 16 (2013) no. 1, pp. 56-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain results on existence of dense free subgroups of the automorphism group of a homogeneous model.
@article{MT_2013_16_1_a3,
     author = {K. Zh. Kudaǐbergenov},
     title = {On dense free subgroups of the automorphism group},
     journal = {Matemati\v{c}eskie trudy},
     pages = {56--62},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2013_16_1_a3/}
}
TY  - JOUR
AU  - K. Zh. Kudaǐbergenov
TI  - On dense free subgroups of the automorphism group
JO  - Matematičeskie trudy
PY  - 2013
SP  - 56
EP  - 62
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2013_16_1_a3/
LA  - ru
ID  - MT_2013_16_1_a3
ER  - 
%0 Journal Article
%A K. Zh. Kudaǐbergenov
%T On dense free subgroups of the automorphism group
%J Matematičeskie trudy
%D 2013
%P 56-62
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2013_16_1_a3/
%G ru
%F MT_2013_16_1_a3
K. Zh. Kudaǐbergenov. On dense free subgroups of the automorphism group. Matematičeskie trudy, Tome 16 (2013) no. 1, pp. 56-62. http://geodesic.mathdoc.fr/item/MT_2013_16_1_a3/

[1] Kudaibergenov K. Zh., “O genericheskikh avtomorfizmakh”, Matem. tr., 6:1 (2003), 75–97 | MR | Zbl

[2] Keisler H. J., Morley M. D., “On the number of homogeneous models of a given power”, Israel J. Math., 5:2 (1967), 73–78 | DOI | MR | Zbl

[3] Macpherson H. D., “Groups of automorphisms of $\aleph_0$-categorical structures”, Quart. J. Math. Oxford Ser. (2), 37:148 (1986), 449–465 | DOI | MR | Zbl

[4] Macpherson D., “A survey of homogeneous structures”, Discrete Math., 311:15 (2011), 1599–1634 | DOI | MR | Zbl

[5] Melles G., Shelah S., “$Aut(M)$ has a large dense free subgroup for saturated $M$”, Bull. London Math. Soc., 26:4 (1994), 339–344 | DOI | MR | Zbl