On the Ricci curvature of solvable metric lie algebras with two-step nilpotent derived algebras
Matematičeskie trudy, Tome 16 (2013) no. 1, pp. 3-17

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the Ricci operator of any nonunimoular solvable metric Lie algebra having a two-step nilpotent derived Lie algebra of dimension 6 has at least two negative eigenvalues.
@article{MT_2013_16_1_a0,
     author = {N. A. Abiev},
     title = {On the {Ricci} curvature of solvable metric lie algebras with two-step nilpotent derived algebras},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2013_16_1_a0/}
}
TY  - JOUR
AU  - N. A. Abiev
TI  - On the Ricci curvature of solvable metric lie algebras with two-step nilpotent derived algebras
JO  - Matematičeskie trudy
PY  - 2013
SP  - 3
EP  - 17
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2013_16_1_a0/
LA  - ru
ID  - MT_2013_16_1_a0
ER  - 
%0 Journal Article
%A N. A. Abiev
%T On the Ricci curvature of solvable metric lie algebras with two-step nilpotent derived algebras
%J Matematičeskie trudy
%D 2013
%P 3-17
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2013_16_1_a0/
%G ru
%F MT_2013_16_1_a0
N. A. Abiev. On the Ricci curvature of solvable metric lie algebras with two-step nilpotent derived algebras. Matematičeskie trudy, Tome 16 (2013) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/MT_2013_16_1_a0/