On the Ricci curvature of solvable metric lie algebras with two-step nilpotent derived algebras
Matematičeskie trudy, Tome 16 (2013) no. 1, pp. 3-17
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the Ricci operator of any nonunimoular solvable metric Lie algebra having a two-step nilpotent derived Lie algebra of dimension 6 has at least two negative eigenvalues.
@article{MT_2013_16_1_a0,
author = {N. A. Abiev},
title = {On the {Ricci} curvature of solvable metric lie algebras with two-step nilpotent derived algebras},
journal = {Matemati\v{c}eskie trudy},
pages = {3--17},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2013_16_1_a0/}
}
N. A. Abiev. On the Ricci curvature of solvable metric lie algebras with two-step nilpotent derived algebras. Matematičeskie trudy, Tome 16 (2013) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/MT_2013_16_1_a0/