The Ricci operator of completely solvable metric Lie algebras
Matematičeskie trudy, Tome 15 (2012) no. 2, pp. 146-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Ricci curvature of completely solvable metric Lie algebras. In particular, we prove that the Ricci operator of every completely solvable nonunimodular or every noncommutative nilpotent metric Lie algebra has at least two negative eigenvalues.
@article{MT_2012_15_2_a8,
     author = {Yu. G. Nikonorov and M. S. Chebarykov},
     title = {The {Ricci} operator of completely  solvable metric {Lie} algebras},
     journal = {Matemati\v{c}eskie trudy},
     pages = {146--158},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2012_15_2_a8/}
}
TY  - JOUR
AU  - Yu. G. Nikonorov
AU  - M. S. Chebarykov
TI  - The Ricci operator of completely  solvable metric Lie algebras
JO  - Matematičeskie trudy
PY  - 2012
SP  - 146
EP  - 158
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2012_15_2_a8/
LA  - ru
ID  - MT_2012_15_2_a8
ER  - 
%0 Journal Article
%A Yu. G. Nikonorov
%A M. S. Chebarykov
%T The Ricci operator of completely  solvable metric Lie algebras
%J Matematičeskie trudy
%D 2012
%P 146-158
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2012_15_2_a8/
%G ru
%F MT_2012_15_2_a8
Yu. G. Nikonorov; M. S. Chebarykov. The Ricci operator of completely  solvable metric Lie algebras. Matematičeskie trudy, Tome 15 (2012) no. 2, pp. 146-158. http://geodesic.mathdoc.fr/item/MT_2012_15_2_a8/

[1] Alekseevskii D. V., “Odnorodnye rimanovy prostranstva otritsatelnoi krivizny”, Matem. sb., 96(138):1 (1975), 93–117 | MR | Zbl

[2] Alekseevskii D. V., Kimelfeld B. N., “Struktura odnorodnykh rimanovykh prostranstv s nulevoi kriviznoi Richchi”, Funkts. analiz i ego pril., 9:2 (1975), 5–11 | MR | Zbl

[3] Balaschenko V. V., Nikonorov Yu. G., Rodionov E. D., Slavskii V. V., Odnorodnye prostranstva: teoriya i prilozheniya, Poligrafist, Khanty-Mansiisk, 2008

[4] Besse A. L., Mnogoobraziya Einshteina, Mir, M., 1990 | MR | Zbl

[5] Vinberg E. B., Gorbatsevich V. V., Onischik A. L., Stroenie grupp i algebr Li, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 41, VINITI, M., 1990 | MR | MR | Zbl

[6] Gantmakher F. R., Teoriya matrits, Izd. 4-e, dop., Nauka, M., 1988 | MR | Zbl

[7] Kremlev A. G., “Signatura krivizny Richchi levoinvariantnykh rimanovykh metrik na pyatimernykh nilpotentnykh gruppakh Li”, Sib. elektron. matem. izv., 6 (2009), 326–339 | MR

[8] Kremlev A. G., Nikonorov Yu. G., “Signatura krivizny Richchi levoinvariantnykh rimanovykh metrik na chetyrekhmernykh gruppakh Li. Unimodulyarnyi sluchai”, Matem. tr., 11:2 (2008), 115–147 | MR | Zbl

[9] Kremlev A. G., Nikonorov Yu. G., “Signatura krivizny Richchi levoinvariantnykh rimanovykh metrik na chetyrekhmernykh gruppakh Li. Neunimodulyarnyi sluchai”, Matem. tr., 12:1 (2009), 40–116 | MR | Zbl

[10] Nikitenko E. V., Nikonorov Yu. G., “Shestimernye einshteinovy solvmnogoobraziya”, Matem. tr., 8:1 (2005), 71–121 | MR | Zbl

[11] Nikonorov Yu. G., Rodionov E. D., Slavskii V. V., “Geometriya odnorodnykh rimanovykh mnogoobrazii”, Sovrem. matem. i ee prilozheniya. Geometriya, 37 (2006), 101–178 | MR

[12] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR

[13] Chebarykov M. S., “O krivizne Richchi neunimodulyarnykh razreshimykh metricheskikh algebr Li maloi razmernosti”, Matem. tr., 13:1 (2010), 186–211 | MR | Zbl

[14] Dotti Miatello I., “Ricci curvature of left-invariant metrics on solvable unimodular Lie groups”, Math. Z., 180:2 (1982), 257–263 | MR | Zbl

[15] Jensen G., “The scalar curvature of left-invariant Riemannian metrics”, Indiana Univ. Math. J., 20 (1970/1971), 1125–1144 | DOI | MR

[16] Milnor J., “Curvatures of left-invariant metrics on Lie groups”, Adv. Math., 21:3 (1976), 293–329 | DOI | MR | Zbl