Existence of a~countable infinite strictly $2$-homogeneous distributive lattice
Matematičeskie trudy, Tome 15 (2012) no. 2, pp. 100-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a countable infinite $2$-homogeneous distributive lattice that is not $3$-homogeneous, which answers a question of Droste and Macpherson.
@article{MT_2012_15_2_a5,
     author = {K. Zh. Kudaǐbergenov},
     title = {Existence of a~countable infinite strictly $2$-homogeneous distributive lattice},
     journal = {Matemati\v{c}eskie trudy},
     pages = {100--104},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2012_15_2_a5/}
}
TY  - JOUR
AU  - K. Zh. Kudaǐbergenov
TI  - Existence of a~countable infinite strictly $2$-homogeneous distributive lattice
JO  - Matematičeskie trudy
PY  - 2012
SP  - 100
EP  - 104
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2012_15_2_a5/
LA  - ru
ID  - MT_2012_15_2_a5
ER  - 
%0 Journal Article
%A K. Zh. Kudaǐbergenov
%T Existence of a~countable infinite strictly $2$-homogeneous distributive lattice
%J Matematičeskie trudy
%D 2012
%P 100-104
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2012_15_2_a5/
%G ru
%F MT_2012_15_2_a5
K. Zh. Kudaǐbergenov. Existence of a~countable infinite strictly $2$-homogeneous distributive lattice. Matematičeskie trudy, Tome 15 (2012) no. 2, pp. 100-104. http://geodesic.mathdoc.fr/item/MT_2012_15_2_a5/

[1] Artamonov V. A. i dr., Obschaya algebra, v. 2, Seriya “Spravochnaya matematicheskaya biblioteka”, Nauka, M., 1991

[2] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982 | MR

[3] Droste M., Macpherson D., “The automorphism group of the universal distributive lattice”, Algebra Universalis, 43:4 (2000), 295–306 | DOI | MR | Zbl

[4] Hodges W., Model Theory, Encyclopedia of Mathematics and Its Applications, 42, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[5] Shelah S., Classification Theory and the Number of Nonisomorphic Models, North-Holland, Amsterdam, 1978 | MR | Zbl