Existence of a countable infinite strictly $2$-homogeneous distributive lattice
Matematičeskie trudy, Tome 15 (2012) no. 2, pp. 100-104
Cet article a éte moissonné depuis la source Math-Net.Ru
We construct a countable infinite $2$-homogeneous distributive lattice that is not $3$-homogeneous, which answers a question of Droste and Macpherson.
@article{MT_2012_15_2_a5,
author = {K. Zh. Kudaǐbergenov},
title = {Existence of a~countable infinite strictly $2$-homogeneous distributive lattice},
journal = {Matemati\v{c}eskie trudy},
pages = {100--104},
year = {2012},
volume = {15},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2012_15_2_a5/}
}
K. Zh. Kudaǐbergenov. Existence of a countable infinite strictly $2$-homogeneous distributive lattice. Matematičeskie trudy, Tome 15 (2012) no. 2, pp. 100-104. http://geodesic.mathdoc.fr/item/MT_2012_15_2_a5/
[1] Artamonov V. A. i dr., Obschaya algebra, v. 2, Seriya “Spravochnaya matematicheskaya biblioteka”, Nauka, M., 1991
[2] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982 | MR
[3] Droste M., Macpherson D., “The automorphism group of the universal distributive lattice”, Algebra Universalis, 43:4 (2000), 295–306 | DOI | MR | Zbl
[4] Hodges W., Model Theory, Encyclopedia of Mathematics and Its Applications, 42, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[5] Shelah S., Classification Theory and the Number of Nonisomorphic Models, North-Holland, Amsterdam, 1978 | MR | Zbl