Nontrivial solvability of a~class of nonlinear integro-differential equations of second order
Matematičeskie trudy, Tome 15 (2012) no. 2, pp. 172-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the study of nontrivial solvability and the asymptotic behavior of solutions for some classes of nonlinear integro-dofferential equations with a noncompact operator in a special case. Combining special factorization methods with the methods of the theory of linear integral equations of convolution type, we prove existence theorems for these classes of equations. With the help of a priori estimates, we calculate the limits of solutions obtained at infinity. The examples exhibited in the article are of mathematical interest in their own right. They are particular cases of the equations considered and have important applications in quantum mechanics.
@article{MT_2012_15_2_a10,
     author = {Kh. A. Khachatryan},
     title = {Nontrivial solvability of a~class of nonlinear integro-differential equations of second order},
     journal = {Matemati\v{c}eskie trudy},
     pages = {172--193},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2012_15_2_a10/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
TI  - Nontrivial solvability of a~class of nonlinear integro-differential equations of second order
JO  - Matematičeskie trudy
PY  - 2012
SP  - 172
EP  - 193
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2012_15_2_a10/
LA  - ru
ID  - MT_2012_15_2_a10
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%T Nontrivial solvability of a~class of nonlinear integro-differential equations of second order
%J Matematičeskie trudy
%D 2012
%P 172-193
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2012_15_2_a10/
%G ru
%F MT_2012_15_2_a10
Kh. A. Khachatryan. Nontrivial solvability of a~class of nonlinear integro-differential equations of second order. Matematičeskie trudy, Tome 15 (2012) no. 2, pp. 172-193. http://geodesic.mathdoc.fr/item/MT_2012_15_2_a10/

[1] Arabadzhyan L. G., Engibaryan N. B., “Uravneniya v svertkakh i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhn. Ser. Mat. anal., 22, VINITI, M., 1984, 175–244 | MR | Zbl

[2] Budak B. M., Fomin S. V., Kratnye ryady i integraly, Nauka, M., 1965 | Zbl

[3] Gokhberg I. Ts., Feldman I. A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971 | MR

[4] Engibaryan N. B., Arabadzhyan L. G., “O nekotorykh zadachakh faktorizatsii dlya integralnykh operatorov tipa svertki”, Differents. uravneniya, 26:8 (1990), 1442–1452 | MR | Zbl

[5] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR

[6] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR

[7] Landau L. D., Lifshits E. M., Kvantovaya mekhanika, v. 3, Nauka, M., 1989 | Zbl

[8] Khachatryan Kh. A., “Razreshimost odnogo klassa integro-differentsialnykh uravnenii vtorogo poryadka s monotonnoi nelineinostyu na poluosi”, Izv. RAN. Ser. matem., 74:5 (2010), 191–204 | DOI | MR | Zbl

[9] Khachatryan Kh. A., Khachatryan E. A., “O razreshimosti nekotorykh klassov nelineinykh integro-differentsialnykh uravnenii s nekompaktnym operatorom”, Izv. vuzov. Matem., 2011, no. 1, 91–100 | MR | Zbl