On some classes of coefficient inverse problems for parabolic systems of equations
Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 155-177
Voir la notice de l'article provenant de la source Math-Net.Ru
We examine the question on solvability in the Sobolev spaces of coefficient inverse problems for parabolic systems of equations with the overdetermination conditions on a collection of surfaces. Under certain conditions on the geometry of the domain and the boundary operators, the local solvability of the problem is proven. It is demonstrated that the conditions on the boundary operators are sharp and that, in some cases, the problem is not unconditionally solvable.
@article{MT_2012_15_1_a9,
author = {S. G. Pyatkov and M. L. Samkov},
title = {On some classes of coefficient inverse problems for parabolic systems of equations},
journal = {Matemati\v{c}eskie trudy},
pages = {155--177},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2012_15_1_a9/}
}
TY - JOUR AU - S. G. Pyatkov AU - M. L. Samkov TI - On some classes of coefficient inverse problems for parabolic systems of equations JO - Matematičeskie trudy PY - 2012 SP - 155 EP - 177 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2012_15_1_a9/ LA - ru ID - MT_2012_15_1_a9 ER -
S. G. Pyatkov; M. L. Samkov. On some classes of coefficient inverse problems for parabolic systems of equations. Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 155-177. http://geodesic.mathdoc.fr/item/MT_2012_15_1_a9/