Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2012_15_1_a1, author = {A. V. Gavrilov}, title = {The affine connection in the normal coordinates}, journal = {Matemati\v{c}eskie trudy}, pages = {27--54}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2012_15_1_a1/} }
A. V. Gavrilov. The affine connection in the normal coordinates. Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 27-54. http://geodesic.mathdoc.fr/item/MT_2012_15_1_a1/
[1] Gavrilov A. V., “Algebraicheskie svoistva kovariantnogo differentsirovaniya i kompozitsiya eksponentsialnykh otobrazhenii”, Matem. tr., 9:1 (2006), 3–20 | MR | Zbl
[2] Gavrilov A. V., “Dvoinoe eksponentsialnoe otobrazhenie i kovariantnoe differentsirovanie”, Sib. matem. zhurn., 48:1 (2007), 68–74 | MR | Zbl
[3] Gavrilov A. V., “O vysshikh kovariantnykh proizvodnykh”, Sib. matem. zhurn., 49:6 (2008), 1250–1262 | MR | Zbl
[4] Gavrilov A. V., “Formula Leibnitsa dlya kovariantnoi proizvodnoi i nekotorye ee prilozheniya”, Matem. tr., 13:1 (2010), 63–84 | MR | Zbl
[5] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v. 1–2, Nauka, M., 1981
[6] Sharafutdinov V. A., “Geometricheskoe ischislenie simvolov psevdodifferentsialnykh operatorov. I”, Matem. tr., 7:2 (2004), 159–206 ; “II”, Матем. тр., 8:1 (2005), 176–201 | MR | Zbl | MR | Zbl
[7] Gavrilov A. V., “Commutation relations on the covariant derivative”, J. Algebra, 323:2 (2010), 517–521 | DOI | MR | Zbl