The affine connection in the normal coordinates
Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 27-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a method to calculate the derivatives of the Christoffel symbols in the normal coordinates on a smooth manifold with symmetric affine connection. As an application, we construct an algorithm for computing the Taylor series of the double exponential map.
@article{MT_2012_15_1_a1,
     author = {A. V. Gavrilov},
     title = {The affine connection in the normal coordinates},
     journal = {Matemati\v{c}eskie trudy},
     pages = {27--54},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2012_15_1_a1/}
}
TY  - JOUR
AU  - A. V. Gavrilov
TI  - The affine connection in the normal coordinates
JO  - Matematičeskie trudy
PY  - 2012
SP  - 27
EP  - 54
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2012_15_1_a1/
LA  - ru
ID  - MT_2012_15_1_a1
ER  - 
%0 Journal Article
%A A. V. Gavrilov
%T The affine connection in the normal coordinates
%J Matematičeskie trudy
%D 2012
%P 27-54
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2012_15_1_a1/
%G ru
%F MT_2012_15_1_a1
A. V. Gavrilov. The affine connection in the normal coordinates. Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 27-54. http://geodesic.mathdoc.fr/item/MT_2012_15_1_a1/

[1] Gavrilov A. V., “Algebraicheskie svoistva kovariantnogo differentsirovaniya i kompozitsiya eksponentsialnykh otobrazhenii”, Matem. tr., 9:1 (2006), 3–20 | MR | Zbl

[2] Gavrilov A. V., “Dvoinoe eksponentsialnoe otobrazhenie i kovariantnoe differentsirovanie”, Sib. matem. zhurn., 48:1 (2007), 68–74 | MR | Zbl

[3] Gavrilov A. V., “O vysshikh kovariantnykh proizvodnykh”, Sib. matem. zhurn., 49:6 (2008), 1250–1262 | MR | Zbl

[4] Gavrilov A. V., “Formula Leibnitsa dlya kovariantnoi proizvodnoi i nekotorye ee prilozheniya”, Matem. tr., 13:1 (2010), 63–84 | MR | Zbl

[5] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v. 1–2, Nauka, M., 1981

[6] Sharafutdinov V. A., “Geometricheskoe ischislenie simvolov psevdodifferentsialnykh operatorov. I”, Matem. tr., 7:2 (2004), 159–206 ; “II”, Матем. тр., 8:1 (2005), 176–201 | MR | Zbl | MR | Zbl

[7] Gavrilov A. V., “Commutation relations on the covariant derivative”, J. Algebra, 323:2 (2010), 517–521 | DOI | MR | Zbl