The Poisson problem in a~domain with a~cut
Matematičeskie trudy, Tome 14 (2011) no. 2, pp. 189-205

Voir la notice de l'article provenant de la source Math-Net.Ru

With the help of harmonic wavelets, we study the behavior of solutions to the Poisson problem in an elliptic ring when the interior bound shrinks to a segment. It is demonstrated that only partial derivatives of a solution have unbounded singularities near the ends of this segment.
@article{MT_2011_14_2_a8,
     author = {Yu. N. Subbotin and N. I. Chernykh},
     title = {The {Poisson} problem in a~domain with a~cut},
     journal = {Matemati\v{c}eskie trudy},
     pages = {189--205},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2011_14_2_a8/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
AU  - N. I. Chernykh
TI  - The Poisson problem in a~domain with a~cut
JO  - Matematičeskie trudy
PY  - 2011
SP  - 189
EP  - 205
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2011_14_2_a8/
LA  - ru
ID  - MT_2011_14_2_a8
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%A N. I. Chernykh
%T The Poisson problem in a~domain with a~cut
%J Matematičeskie trudy
%D 2011
%P 189-205
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2011_14_2_a8/
%G ru
%F MT_2011_14_2_a8
Yu. N. Subbotin; N. I. Chernykh. The Poisson problem in a~domain with a~cut. Matematičeskie trudy, Tome 14 (2011) no. 2, pp. 189-205. http://geodesic.mathdoc.fr/item/MT_2011_14_2_a8/