Local approximation by splines with displacement of nodes
Matematičeskie trudy, Tome 14 (2011) no. 2, pp. 73-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of approximating a function defined on a uniform mesh by the method of local polynomial spline-approximation where the mesh of the nodes of the spline is chosen displaced relative to the mesh of the initial data. Conditions are established for the local form preservation by the spline of the initial data. We study the approximative properties of the method for the case of the simplest local approximation formula and find the optimal values of the displacement parameters.
@article{MT_2011_14_2_a3,
     author = {Yu. S. Volkov and E. V. Strelkova and V. T. Shevaldin},
     title = {Local approximation by splines with displacement of nodes},
     journal = {Matemati\v{c}eskie trudy},
     pages = {73--82},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2011_14_2_a3/}
}
TY  - JOUR
AU  - Yu. S. Volkov
AU  - E. V. Strelkova
AU  - V. T. Shevaldin
TI  - Local approximation by splines with displacement of nodes
JO  - Matematičeskie trudy
PY  - 2011
SP  - 73
EP  - 82
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2011_14_2_a3/
LA  - ru
ID  - MT_2011_14_2_a3
ER  - 
%0 Journal Article
%A Yu. S. Volkov
%A E. V. Strelkova
%A V. T. Shevaldin
%T Local approximation by splines with displacement of nodes
%J Matematičeskie trudy
%D 2011
%P 73-82
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2011_14_2_a3/
%G ru
%F MT_2011_14_2_a3
Yu. S. Volkov; E. V. Strelkova; V. T. Shevaldin. Local approximation by splines with displacement of nodes. Matematičeskie trudy, Tome 14 (2011) no. 2, pp. 73-82. http://geodesic.mathdoc.fr/item/MT_2011_14_2_a3/

[1] Volkov Yu. S., Bogdanov V. V., Miroshnichenko V. L., Shevaldin V. T., “Formosokhranyayuschaya interpolyatsiya kubicheskimi splainami”, Matem. zametki, 88:6 (2010), 836–844

[2] Volkov Yu. S., Strelkova E. V., Shevaldin V. T., “O lokalnoi approksimatsii kubicheskimi splainami”, Metody splain-funktsii, Tez. dokl. Ross. konf., posvyaschennoi 80-letiyu so dnya rozhdeniya Yu. S. Zavyalova, ed. V. L. Miroshnichenko, IM SO RAN, Novosibirsk, 2011, 35–36

[3] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[4] Kvasov B. I., “Parabolicheskie $B$-splainy v zadachakh interpolyatsii”, Zhurn. vychisl. matem. i matem. fiz., 23:2 (1983), 278–289 | MR | Zbl

[5] Korneichuk N. P., Splainy v teorii priblizheniya, Nauka, M., 1984 | MR

[6] Korovkin P. P., Lineinye operatory i teoriya priblizhenii, GIFML, M., 1959

[7] Ovchinnikova T. E., “Tochnye otsenki pogreshnosti priblizheniya lokalnoi approksimatsii kubicheskimi splainami. Formula, tochnaya na polinomakh pervoi stepeni”, Approksimatsiya splainami, Vychislitelnye sistemy, 128, IM SO AN SSSR, Novosibirsk, 1988, 39–59 | MR

[8] Strelkova E. V., Shevaldin V. T., “Ob odnom sposobe approksimatsii lokalnymi parabolicheskimi splainami”, Sovremennye problemy matematiki, Tez. 42-i Vseros. molod. konf., UrO RAN, Ekaterinburg, 2011, 148–150

[9] Subbotin Yu. N., “Nasledovanie svoistv monotonnosti i vypuklosti pri lokalnoi approksimatsii”, Zhurn. vychisl. matem. i matem. fiz., 33:7 (1993), 996–1003 | MR | Zbl

[10] Shevaldin V. T., “Approksimatsiya lokalnymi parabolicheskimi splainami s proizvolnym raspolozheniem uzlov”, Sib. zhurn. vychisl. matem., 8:1 (2005), 77–88 | Zbl

[11] Shevaldina E. V., “Nasledovanie svoistv $k$-monotonnosti pri approksimatsii lokalnymi kubicheskimi splainami”, Problemy teoreticheskoi i prikladnoi matematiki, Tr. 40-i Vseros. molod. konf., UrO RAN, Ekaterinburg, 2009, 106–110

[12] de Boor C., Fix G. J., “Spline approximation by quasiinterpolants”, J. Approximation Theory, 8:1 (1973), 19–45 | DOI | MR | Zbl

[13] Hoeffding W., “The $L_1$ norm of the approximation error for splines with equidistant knots”, J. Approximation Theory, 11:2 (1974), 176–193 | DOI | MR | Zbl

[14] Lyche T., Schumaker L. L., “Local spline approximation methods”, J. Approximation Theory, 15:4 (1975), 294–325 | DOI | MR | Zbl

[15] Marsden M. J., “An identity for spline functions with applications to variation-diminishing spline approximation”, J. Approximation Theory, 3:1 (1970), 7–49 | DOI | MR | Zbl

[16] Marsden M. J., Schoenberg I. J., “On variation diminishing spline approximation methods”, Mathematica (Cluj), 8(31):1 (1966), 61–82 | MR | Zbl

[17] Schoenberg I. J., “On spline functions”, Inequalities, Proc. Sympos. Wright-Patterson Air Force Base (Ohio, 1965), ed. O. Shisha, Academic Press, New York, 1967, 255–291 | MR