Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2011_14_2_a3, author = {Yu. S. Volkov and E. V. Strelkova and V. T. Shevaldin}, title = {Local approximation by splines with displacement of nodes}, journal = {Matemati\v{c}eskie trudy}, pages = {73--82}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2011_14_2_a3/} }
TY - JOUR AU - Yu. S. Volkov AU - E. V. Strelkova AU - V. T. Shevaldin TI - Local approximation by splines with displacement of nodes JO - Matematičeskie trudy PY - 2011 SP - 73 EP - 82 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2011_14_2_a3/ LA - ru ID - MT_2011_14_2_a3 ER -
Yu. S. Volkov; E. V. Strelkova; V. T. Shevaldin. Local approximation by splines with displacement of nodes. Matematičeskie trudy, Tome 14 (2011) no. 2, pp. 73-82. http://geodesic.mathdoc.fr/item/MT_2011_14_2_a3/
[1] Volkov Yu. S., Bogdanov V. V., Miroshnichenko V. L., Shevaldin V. T., “Formosokhranyayuschaya interpolyatsiya kubicheskimi splainami”, Matem. zametki, 88:6 (2010), 836–844
[2] Volkov Yu. S., Strelkova E. V., Shevaldin V. T., “O lokalnoi approksimatsii kubicheskimi splainami”, Metody splain-funktsii, Tez. dokl. Ross. konf., posvyaschennoi 80-letiyu so dnya rozhdeniya Yu. S. Zavyalova, ed. V. L. Miroshnichenko, IM SO RAN, Novosibirsk, 2011, 35–36
[3] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR
[4] Kvasov B. I., “Parabolicheskie $B$-splainy v zadachakh interpolyatsii”, Zhurn. vychisl. matem. i matem. fiz., 23:2 (1983), 278–289 | MR | Zbl
[5] Korneichuk N. P., Splainy v teorii priblizheniya, Nauka, M., 1984 | MR
[6] Korovkin P. P., Lineinye operatory i teoriya priblizhenii, GIFML, M., 1959
[7] Ovchinnikova T. E., “Tochnye otsenki pogreshnosti priblizheniya lokalnoi approksimatsii kubicheskimi splainami. Formula, tochnaya na polinomakh pervoi stepeni”, Approksimatsiya splainami, Vychislitelnye sistemy, 128, IM SO AN SSSR, Novosibirsk, 1988, 39–59 | MR
[8] Strelkova E. V., Shevaldin V. T., “Ob odnom sposobe approksimatsii lokalnymi parabolicheskimi splainami”, Sovremennye problemy matematiki, Tez. 42-i Vseros. molod. konf., UrO RAN, Ekaterinburg, 2011, 148–150
[9] Subbotin Yu. N., “Nasledovanie svoistv monotonnosti i vypuklosti pri lokalnoi approksimatsii”, Zhurn. vychisl. matem. i matem. fiz., 33:7 (1993), 996–1003 | MR | Zbl
[10] Shevaldin V. T., “Approksimatsiya lokalnymi parabolicheskimi splainami s proizvolnym raspolozheniem uzlov”, Sib. zhurn. vychisl. matem., 8:1 (2005), 77–88 | Zbl
[11] Shevaldina E. V., “Nasledovanie svoistv $k$-monotonnosti pri approksimatsii lokalnymi kubicheskimi splainami”, Problemy teoreticheskoi i prikladnoi matematiki, Tr. 40-i Vseros. molod. konf., UrO RAN, Ekaterinburg, 2009, 106–110
[12] de Boor C., Fix G. J., “Spline approximation by quasiinterpolants”, J. Approximation Theory, 8:1 (1973), 19–45 | DOI | MR | Zbl
[13] Hoeffding W., “The $L_1$ norm of the approximation error for splines with equidistant knots”, J. Approximation Theory, 11:2 (1974), 176–193 | DOI | MR | Zbl
[14] Lyche T., Schumaker L. L., “Local spline approximation methods”, J. Approximation Theory, 15:4 (1975), 294–325 | DOI | MR | Zbl
[15] Marsden M. J., “An identity for spline functions with applications to variation-diminishing spline approximation”, J. Approximation Theory, 3:1 (1970), 7–49 | DOI | MR | Zbl
[16] Marsden M. J., Schoenberg I. J., “On variation diminishing spline approximation methods”, Mathematica (Cluj), 8(31):1 (1966), 61–82 | MR | Zbl
[17] Schoenberg I. J., “On spline functions”, Inequalities, Proc. Sympos. Wright-Patterson Air Force Base (Ohio, 1965), ed. O. Shisha, Academic Press, New York, 1967, 255–291 | MR