Extremal functions of cubature formulas on a~multidimensional sphere and spherical splines
Matematičeskie trudy, Tome 14 (2011) no. 2, pp. 14-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish the general form of extremal cubature formulas on multidimensional spheres. The domains of definition for the cubature formulas under consideration are Sobolev-type spaces on the sphere. The smoothness of the class function under study may be fractional. We prove that, for a given set of nodes, there exists a one-to-one correspondence between the set of extremal functions of cubature formulas on the sphere and the set of natural spherical splines with zero spherical mean.
@article{MT_2011_14_2_a1,
     author = {V. L. Vaskevich},
     title = {Extremal functions of cubature formulas on a~multidimensional sphere and spherical splines},
     journal = {Matemati\v{c}eskie trudy},
     pages = {14--27},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2011_14_2_a1/}
}
TY  - JOUR
AU  - V. L. Vaskevich
TI  - Extremal functions of cubature formulas on a~multidimensional sphere and spherical splines
JO  - Matematičeskie trudy
PY  - 2011
SP  - 14
EP  - 27
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2011_14_2_a1/
LA  - ru
ID  - MT_2011_14_2_a1
ER  - 
%0 Journal Article
%A V. L. Vaskevich
%T Extremal functions of cubature formulas on a~multidimensional sphere and spherical splines
%J Matematičeskie trudy
%D 2011
%P 14-27
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2011_14_2_a1/
%G ru
%F MT_2011_14_2_a1
V. L. Vaskevich. Extremal functions of cubature formulas on a~multidimensional sphere and spherical splines. Matematičeskie trudy, Tome 14 (2011) no. 2, pp. 14-27. http://geodesic.mathdoc.fr/item/MT_2011_14_2_a1/

[1] Vaskevich V. L., “Kriterii garantirovannoi tochnosti vychisleniya mnogomernykh integralov”, Vychisl. tekhnol., 9, Spets. vypusk (2004), 44–49 | Zbl

[2] Vaskevich V. L., “O vozmuscheniyakh pogreshnosti pri malykh sheveleniyakh vesov kubaturnoi formuly”, Vychisl. tekhnol., 11, Spets. vypusk (2006), 19–26 | Zbl

[3] Vaskevich V. L., “Konstanty vlozheniya periodicheskikh prostranstv Soboleva drobnogo poryadka”, Sib. matem. zhurn., 49:5 (2008), 1019–1027 | MR | Zbl

[4] Vaskevich V. L., “Konstanty i funktsii vlozheniya prostranstv sobolevskogo tipa na edinichnoi sfere”, Dokl. RAN, 433:4 (2010), 441–446 | MR | Zbl

[5] Ignatov M. I., Pevnyi A. B., Naturalnye splainy mnogikh peremennykh, Nauka, L., 1991 | MR | Zbl

[6] Lizorkin P. I., Nikolskii S. M., “Priblizhenie sfericheskimi funktsiyami”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam, Chast 11, Tr. MIAN SSSR, 173, 1986, 181–189 | MR | Zbl

[7] Mikhlin S. G., Mnogomernye singulyarnye integraly i integralnye uravneniya, GIFML, M., 1962

[8] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR

[9] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR

[10] Sobolev S. L., Vaskevich V. L., Kubaturnye formuly, Izd-vo In-ta matematiki, Novosibirsk, 1996 | Zbl

[11] Freeden W., Schreiner M., Franke R., “A survey on spherical spline approximation”, Surveys Math. Indust., 7:1 (1997), 29–85 | MR | Zbl

[12] Müller C., Spherical Harmonics, Springer-Verlag, Berlin, 1966 | MR

[13] Triebel H., “Sampling numbers and embedding constants”, Tr. Mat. Inst. Steklova, 248, 2005, 275–284 | MR | Zbl