Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2011_14_2_a0, author = {V. V. Bogdanov}, title = {Sufficient conditions for the comonotone interpolation of cubic $C^2$}, journal = {Matemati\v{c}eskie trudy}, pages = {3--13}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2011_14_2_a0/} }
V. V. Bogdanov. Sufficient conditions for the comonotone interpolation of cubic $C^2$. Matematičeskie trudy, Tome 14 (2011) no. 2, pp. 3-13. http://geodesic.mathdoc.fr/item/MT_2011_14_2_a0/
[1] Bogdanov V. V., “Komonotonnaya interpolyatsiya kubicheskim splainom v sluchae odnoi peremeny napravleniya monotonnosti”, Metody splain-funktsii, Rossiiskaya konf., posvyaschennaya 80-letiyu so dnya rozhdeniya Yu. S. Zavyalova, Tez. dokl., Novosibirsk, 2011, 20–21
[2] Bogdanov V. V., Volkov Yu. S., “Vybor parametrov obobschennykh kubicheskikh splainov pri vypukloi interpolyatsii”, Sib. zhurn. vychisl. matem., 9:1 (2006), 5–22 | Zbl
[3] Volkov Yu. S., “O monotonnoi interpolyatsii kubicheskimi splainami”, Vychisl. tekhnol., 6:6 (2001), 14–24 | MR | Zbl
[4] Volkov Yu. S., “Novyi metod postroeniya interpolyatsionnykh kubicheskikh splainov”, Dokl. RAN, 382:2 (2002), 155–157 | MR | Zbl
[5] Zavyalov Yu. S., “O neotritsatelnom reshenii sistemy uravnenii s nestrogo yakobievoi matritsei”, Sib. matem. zhurn., 37:6 (1996), 1303–1307 | MR | Zbl
[6] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR
[7] Kollatts L., Funktsionalnyi analiz i vychislitelnaya matematika, Mir, M., 1969
[8] Miroshnichenko V. L., “Dostatochnye usloviya monotonnosti i vypuklosti dlya interpolyatsionnykh kubicheskikh splainov klassa $C^2$”, Priblizhenie splainami, Vychislitelnye sistemy, 137, IM SO AN SSSR, Novosibirsk, 1990, 31–57, 175–176 | MR
[9] Miroshnichenko V. L., “Convex and monotone spline interpolation”, Constructive Theory of Functions' 84, Proc. Internat. Conf., Publ. House of Bulgar. Acad. Sci., Varna–Sofia, 1984, 610–620
[10] Schumaker L. L., Spline Functions: Basic Theory, Wiley, New York, 1981 | MR | Zbl