Sufficient conditions for the comonotone interpolation of cubic $C^2$
Matematičeskie trudy, Tome 14 (2011) no. 2, pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of interpolation of a function under the condition of the preservation of the nature of its piecewise monotonicity. We give sufficient conditions for the comonotone interpolation by a classical cubic $C^2$-spline in the representation based on the expansion of its first derivative in a basis consisting of $B$-splines. These conditions allow to determine whether the soobtained spline is comonotone without solving the interpolation problem.
@article{MT_2011_14_2_a0,
     author = {V. V. Bogdanov},
     title = {Sufficient conditions for the comonotone interpolation of cubic $C^2$},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2011_14_2_a0/}
}
TY  - JOUR
AU  - V. V. Bogdanov
TI  - Sufficient conditions for the comonotone interpolation of cubic $C^2$
JO  - Matematičeskie trudy
PY  - 2011
SP  - 3
EP  - 13
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2011_14_2_a0/
LA  - ru
ID  - MT_2011_14_2_a0
ER  - 
%0 Journal Article
%A V. V. Bogdanov
%T Sufficient conditions for the comonotone interpolation of cubic $C^2$
%J Matematičeskie trudy
%D 2011
%P 3-13
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2011_14_2_a0/
%G ru
%F MT_2011_14_2_a0
V. V. Bogdanov. Sufficient conditions for the comonotone interpolation of cubic $C^2$. Matematičeskie trudy, Tome 14 (2011) no. 2, pp. 3-13. http://geodesic.mathdoc.fr/item/MT_2011_14_2_a0/

[1] Bogdanov V. V., “Komonotonnaya interpolyatsiya kubicheskim splainom v sluchae odnoi peremeny napravleniya monotonnosti”, Metody splain-funktsii, Rossiiskaya konf., posvyaschennaya 80-letiyu so dnya rozhdeniya Yu. S. Zavyalova, Tez. dokl., Novosibirsk, 2011, 20–21

[2] Bogdanov V. V., Volkov Yu. S., “Vybor parametrov obobschennykh kubicheskikh splainov pri vypukloi interpolyatsii”, Sib. zhurn. vychisl. matem., 9:1 (2006), 5–22 | Zbl

[3] Volkov Yu. S., “O monotonnoi interpolyatsii kubicheskimi splainami”, Vychisl. tekhnol., 6:6 (2001), 14–24 | MR | Zbl

[4] Volkov Yu. S., “Novyi metod postroeniya interpolyatsionnykh kubicheskikh splainov”, Dokl. RAN, 382:2 (2002), 155–157 | MR | Zbl

[5] Zavyalov Yu. S., “O neotritsatelnom reshenii sistemy uravnenii s nestrogo yakobievoi matritsei”, Sib. matem. zhurn., 37:6 (1996), 1303–1307 | MR | Zbl

[6] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[7] Kollatts L., Funktsionalnyi analiz i vychislitelnaya matematika, Mir, M., 1969

[8] Miroshnichenko V. L., “Dostatochnye usloviya monotonnosti i vypuklosti dlya interpolyatsionnykh kubicheskikh splainov klassa $C^2$”, Priblizhenie splainami, Vychislitelnye sistemy, 137, IM SO AN SSSR, Novosibirsk, 1990, 31–57, 175–176 | MR

[9] Miroshnichenko V. L., “Convex and monotone spline interpolation”, Constructive Theory of Functions' 84, Proc. Internat. Conf., Publ. House of Bulgar. Acad. Sci., Varna–Sofia, 1984, 610–620

[10] Schumaker L. L., Spline Functions: Basic Theory, Wiley, New York, 1981 | MR | Zbl