Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2011_14_1_a2, author = {A. V. Greshnov}, title = {On the generalized triangle inequality for quasimetrics induced by noncommuting vector fields}, journal = {Matemati\v{c}eskie trudy}, pages = {70--98}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2011_14_1_a2/} }
A. V. Greshnov. On the generalized triangle inequality for quasimetrics induced by noncommuting vector fields. Matematičeskie trudy, Tome 14 (2011) no. 1, pp. 70-98. http://geodesic.mathdoc.fr/item/MT_2011_14_1_a2/
[1] Akivis M. A., “O kanonicheskikh razlozheniyakh uravnenii lokalnoi analiticheskoi kvazigruppy”, Dokl. AN SSSR, 188 (1969), 967–970 | MR | Zbl
[2] Vodopyanov S. K., Greshnov A. V., “O differentsiruemosti otobrazhenii prostranstv Karno–Karateodori”, Dokl. RAN, 389:5 (2003), 592–596 | MR
[3] Vodopyanov S. K., Karmanova M. B., “Subrimanova geometriya pri minimalnoi gladkosti vektornykh polei”, Dokl. RAN, 422:5 (2008), 583–588 | MR
[4] Greshnov A. V., “Metriki ravnomerno regulyarnykh prostranstv Karno–Karateodori i ikh kasatelnykh konusov”, Sib. matem. zhurn., 47:2 (2006), 259–292 | MR | Zbl
[5] Greshnov A. V., “Lokalnaya approksimatsiya ravnomerno regulyarnykh kvaziprostranstv Karno–Karateodori ikh kasatelnymi konusami”, Sib. matem. zhurn., 48:2 (2007), 290–312 | MR | Zbl
[6] Greshnov A. V., “O differentsiruemosti gorizontalnykh krivykh v kvaziprostranstvakh Karno–Karateodori”, Sib. matem. zhurn., 49:1 (2008), 67–86 | MR | Zbl
[7] Greshnov A. V., “O primenenii metodov gruppovogo analiza differentsialnykh uravnenii dlya nekotorykh sistem $C^1$-gladkikh vektornykh polei”, Sib. matem. zhurn., 50:1 (2009), 47–62 | MR | Zbl
[8] Greshnov A. V., “O primenenii formuly Teilora na nekotorykh kvaziprostranstvakh”, Matem. tr., 12:1 (2009), 3–25 | MR
[9] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl
[10] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Fizmatgiz, M., 1961 | MR
[11] Belläiche A., “The tangent space in sub-Riemannian geometry”, Sub-Riemannian Geometry, Birkhäuser, Basel, 1996, 1–78 | MR | Zbl
[12] Bonfiglioli A., Lanconelli E., Uguzzoni F., Stratified Lie Groups and Potential Theory for their Sub\@Laplacians, Springer Monographs in Mathematics, Springer-Verlag, Berlin–Heidelberg, 2007 | MR | Zbl
[13] Goodman R., “Lifting vector fields to nilpotent Lie groups”, J. Math. Pures Appl. (9), 57:1 (1978), 77–86 | MR
[14] Gromov M., “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian Geometry, Birkhäuser, Basel, 1996, 79–323 | MR | Zbl
[15] Koranyi A., Reimann H. M., “Foundations for the theory of quasiconformal mappings on the Heisenberg group”, Adv. Math., 111:1 (1995), 1–87 | DOI | MR | Zbl
[16] Margulis G. A., Mostow G. D., “The differential of quasi-conformal mapping of a Carnot–Carathéodory space”, Geom. Funct. Anal., 5:2 (1995), 402–433 | DOI | MR | Zbl
[17] Métivier G., “Fonction spectrale et valeurs propres d'une classe d'opérateurs non elliptiques”, Comm. Partial Differential Equations, 1:5 (1976), 467–519 | DOI | MR | Zbl
[18] Mitchell J., “On Carnot–Carathéodory metrics”, J. Differential Geom., 21:1 (1985), 35–45 | MR | Zbl
[19] Nagel A., Stein E. M., Wainger S., “Balls and metrics defined by vector fields. I: Basic properties”, Acta Math., 155:1–2 (1985), 103–147 | DOI | MR | Zbl
[20] Rothchild L. P., Stein E. M., “Hypoelliptic differential operators and nilpotent groups”, Acta Math., 137:3–4 (1976), 247–320 | DOI | MR
[21] Stein E. M., Harmonic Analysis: Real-Variables Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43{, Monographs in Harmonic Analysis,} III, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl