@article{MT_2011_14_1_a0,
author = {V. A. Vatutin},
title = {Multitype branching processes with immigration in random environment, and polling systems},
journal = {Matemati\v{c}eskie trudy},
pages = {3--49},
year = {2011},
volume = {14},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2011_14_1_a0/}
}
V. A. Vatutin. Multitype branching processes with immigration in random environment, and polling systems. Matematičeskie trudy, Tome 14 (2011) no. 1, pp. 3-49. http://geodesic.mathdoc.fr/item/MT_2011_14_1_a0/
[1] Albeverio S., Kozlov M. V., “O vozvratnosti i tranzientnosti zavisyaschikh ot sostoyaniya vetvyaschikhsya protsessov v sluchainoi srede”, TVP, 48:4 (2003), 641–660 | MR | Zbl
[2] Vatutin V. A., “Sistemy pollinga i mnogotipnye vetvyaschiesya protsessy v sluchainoi srede s finalnym produktom”, TVP, 55:4 (2010), 644–679
[3] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede. I: Predelnye teoremy”, TVP, 48:2 (2003), 274–300 | MR | Zbl
[4] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede. II: Konechnomernye raspredeleniya”, TVP, 49:2 (2004), 231–268 | MR | Zbl
[5] Vishnevskii V. M., Semenova O. V., “Matematicheskie metody issledovaniya sistem pollinga”, Avtomat. i telemekh., 2006, no. 2, 3–56 | MR | Zbl
[6] Grishechkin S. A., “Odnokanalnye sistemy s krugovym dostupom ili razdeleniem protsessora i vetvyaschiesya protsessy”, Matem. zametki, 44:4 (1988), 433–448 | MR | Zbl
[7] Grishechkin S. A., “Vetvyaschiesya protsessy i sistemy s povtornymi vyzovami ili sluchainoi distsiplinoi”, TVP, 35:1 (1990), 35–50 | MR | Zbl
[8] Kozlov M. V., “Uslovnaya predelnaya teorema kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Dokl. RAN, 344:1 (1995), 12–15 | MR | Zbl
[9] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971 | MR
[10] Yashkov S. F., Yashkova A. S., “Razdelenie protsessora: obzor matematicheskoi teorii”, Avtomat. i telemekh., 2007, no. 9, 248–322 | Zbl
[11] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl
[12] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Functional limit theorems for strongly subcritical branching processes in random environment”, Stochastic Processes Appl., 115:10 (2005), 1658–1676 | DOI | MR | Zbl
[13] Altman E., “Semi-linear stochastic difference equations”, Discrete Event Dyn. Syst., 19 (2009), 115–136 | DOI | MR | Zbl
[14] Altman E., Fiems D., “Expected waiting time in symmetric polling systems with correlated walking times”, Queueing Systems, 56:3–4 (2007), 241–253 | DOI | MR | Zbl
[15] Athreya K. B., Karlin S., “On branching processes with random environments, I: Extinction probabilities”, Ann. Math. Statist., 42 (1971), 1499–1520 | DOI | MR | Zbl
[16] Athreya K. B., Karlin S., “Branching processes with random environments, II: Limit theorems”, Ann. Math. Statist., 42 (1971), 1843–1858 | DOI | MR | Zbl
[17] Davis R. A., Mikosch T., “The sample autocorrelations of financial time series models”, Ann. Statist., 26:5 (1998), 2049–2080 | DOI | MR | Zbl
[18] Dyakonova E. E., Geiger J., Vatutin V. A., “On the survival probability and a functional limit theorem for branching processes in random environment”, Markov Process. Related Fields, 10:2 (2004), 289–306 | MR | Zbl
[19] Foss S., Chernova N., “On stability of a partially accessible multi-station queue with state-dependent routing”, Queueing Systems, 29:1 (1998), 55–73 | DOI | MR | Zbl
[20] Foss S., Kovalevskiĭ A., “A stability criterion via fluid limits and its application to a polling system”, Queueing Systems, 32:1–3 (1999), 131–168 | DOI | MR | Zbl
[21] Foss S., Last G., “Stability of polling systems with general service policies and with state-dependent routing”, Probab. Eng. Inf. Sci., 12:1 (1998), 49–68 | DOI | MR | Zbl
[22] Fuhrmann S. W., “A decomposition result for a class of polling models”, Queueing Systems, 11:1–2 (1992), 109–120 | DOI | MR | Zbl
[23] Geiger J., Kersting G., “The survival probability of a critical branching process in a random environment”, Theory Probab. Appl., 45:3 (2000), 517–525 | DOI | MR | Zbl
[24] Grishechkin S. A., “Multiclass batch arrival retrial queues analyzed as branching processes with immigration”, Queueing Systems, 11:4 (1992), 395–418 | DOI | MR | Zbl
[25] Gut A., Stopped Random Walks. Limit Theorems and Applications, Applied Probability, 5, Springer-Verlag, New York etc., 1988 | MR | Zbl
[26] Kesten H., “Random difference equations and renewal theory for products of random matrices”, Acta Math., 131 (1973), 207–248 | DOI | MR | Zbl
[27] Key E., “Limiting distributions and regeneration times for multitype branching processes with immigration in a random environment”, Ann. Probab., 15 (1987), 344–353 | DOI | MR | Zbl
[28] Kingmann J. F. C., “Subadditive ergodic theory”, Ann. Probab., 1 (1972), 893–909 | MR
[29] MacPhee I. M., Menshikov M. V., Popov S., Volkov S., “Periodicity in the transient regime of exhaustive polling systems”, Ann. Appl. Probab., 16:4 (2006), 1816–1850 | DOI | MR | Zbl
[30] MacPhee I., Menshikov M., Petritis D., Popov S., “A Markov chain model of a polling system with parameter regeneration”, Ann. Appl. Probab., 17:5–6 (2007), 1447–1473 | DOI | MR | Zbl
[31] MacPhee I., Menshikov M., Petritis D., Popov S., “Polling systems with parameter regeneration, the general case”, Ann. Appl. Probab., 18:6 (2008), 2131–2155 | DOI | MR | Zbl
[32] van der Mei R. D., “Towards a unifying theory on branching-type polling systems in heavy traffic”, Queueing Systems, 57:1 (2007), 29–46 | DOI | MR | Zbl
[33] Resing J. A. C., “Polling systems and multitype branching processes”, Queueing Systems, 13:4 (1993), 409–426 | DOI | MR | Zbl
[34] Riotershtein A., “A note on multitype branching processes with immigration in a random environment”, Ann. Probab., 35:4 (2007), 1573–1592 | DOI | MR
[35] Smith W. L., Wilkinson W. E., “On branching processes in random environments”, Ann. Math. Stat., 40 (1969), 814–827 | DOI | MR | Zbl
[36] Tanny D., “On multitype branching processes in a random environment”, Adv. Appl. Probab., 13 (1981), 464–497 | DOI | MR | Zbl
[37] Vatutin V. A., Dyakonova E. E., “Multitype branching processes and some queueing systems”, J. Math. Sci. (New York), 111:6 (2002), 3901–3911 | DOI | MR | Zbl
[38] Vatutin V. A., Dyakonova E. E., “Reduced branching processes in random environment”, Mathematics and Computer Science II, Algorithms, Trees, Combinatorics and Probabilities, eds. B. Chauvin, P. Flajolet, D. Gardy, A. Mokkadem, Birkhäuser, Basel–Boston–Berlin, 2002, 455–467 | MR | Zbl
[39] Vatutin V. A., Dyakonova E. E., “Spitzer's condition and branching processes in random environment”, Mathematics and Computer Science III, Algorithms, Trees, Combinatorics and Probabilities, eds. M. Drmota, P. Flajolet, D. Gardy, B. Gittenberger, Birkhäuser, Basel–Boston–Berlin, 2004, 375–385 | MR | Zbl
[40] Vatutin V. A., Zubkov A. M., “Branching processes. II”, J. Soviet Math., 67:6 (1993), 3407–3485 | DOI | MR | Zbl