A criterion for straightening a~Lipschitz surface in the Lizorkin--Triebel sense.~III
Matematičeskie trudy, Tome 13 (2010) no. 2, pp. 139-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain two new equivalent quasinorms for unweighted isotropic Besov and Lizorkin–Triebel spaces in the epigraph of a Lipschitz function. The question on the straightening is studied, i. e., the question on the existence of a diffeomorphism taking the epigraph into a halfspace which preserves the Lizorkin–Triebel spaces of the same indices. A criterion for the straightening is established in terms of dyadic weighted inequality where oscillations of a given function on stretched dyadic cubes are involved.
@article{MT_2010_13_2_a5,
     author = {A. I. Parfenov},
     title = {A criterion for straightening {a~Lipschitz} surface in the {Lizorkin--Triebel} {sense.~III}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {139--178},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2010_13_2_a5/}
}
TY  - JOUR
AU  - A. I. Parfenov
TI  - A criterion for straightening a~Lipschitz surface in the Lizorkin--Triebel sense.~III
JO  - Matematičeskie trudy
PY  - 2010
SP  - 139
EP  - 178
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2010_13_2_a5/
LA  - ru
ID  - MT_2010_13_2_a5
ER  - 
%0 Journal Article
%A A. I. Parfenov
%T A criterion for straightening a~Lipschitz surface in the Lizorkin--Triebel sense.~III
%J Matematičeskie trudy
%D 2010
%P 139-178
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2010_13_2_a5/
%G ru
%F MT_2010_13_2_a5
A. I. Parfenov. A criterion for straightening a~Lipschitz surface in the Lizorkin--Triebel sense.~III. Matematičeskie trudy, Tome 13 (2010) no. 2, pp. 139-178. http://geodesic.mathdoc.fr/item/MT_2010_13_2_a5/

[1] Bazarkhanov D. B., “Kharakterizatsii funktsionalnykh prostranstv Nikolskogo–Besova i Lizorkina–Tribelya smeshannoi gladkosti”, Tr. Mat. in-ta im. V. A. Steklova, 243, 2003, 53–65 | MR | Zbl

[2] Bazarkhanov D. B., “Ekvivalentnye (kvazi)normirovki nekotorykh funktsionalnykh prostranstv obobschennoi smeshannoi gladkosti”, Tr. Mat. in-ta im. V. A. Steklova, 248, 2005, 26–39 | MR | Zbl

[3] Besov O. V., “O prostranstvakh Soboleva–Liuvillya i Lizorkina–Tribelya na oblasti”, Tr. Mat. in-ta AN SSSR, 192, 1990, 20–34 | MR | Zbl

[4] Vodopyanov S. K., Ukhlov A. D., “Operatory superpozitsii v prostranstvakh Soboleva”, Izvestiya vuzov. Mat., 2002, no. 10, 11–33 | MR | Zbl

[5] Kalyabin G. A., “Teoremy o prodolzhenii, multiplikatorakh i diffeomorfizmakh dlya obobschennykh klassov Soboleva–Liuvillya v oblastyakh s lipshitsevoi granitsei”, Tr. Mat. in-ta AN SSSR, 172, 1985, 173–186 | MR | Zbl

[6] Kondratev V. A., Eidelman S. D., “Ob usloviyakh na granichnuyu poverkhnost v teorii ellipticheskikh granichnykh zadach”, Dokl. AN SSSR, 246:4 (1979), 812–815 | MR

[7] Mazya V. G., Shaposhnikova T. O., Multiplikatory v prostranstvakh differentsiruemykh funktsii, Izd-vo LGU, L., 1986 | MR

[8] Parfenov A. I., “Diskretnaya norma na lipshitsevoi poverkhnosti i sobolevskaya raspryamlyaemost granitsy”, Matem. tr., 10:2 (2007), 163–186 | MR

[9] Parfenov A. I., “Kriterii raspryamlyaemosti lipshitsevoi poverkhnosti po Lizorkinu–Tribelyu. I”, Matem. tr., 12:1 (2009), 144–204 | MR

[10] Parfenov A. I., “Kriterii raspryamlyaemosti lipshitsevoi poverkhnosti po Lizorkinu–Tribelyu. II”, Matem. tr., 12:2 (2009), 139–159 | MR

[11] Rychkov V. S., “O teoreme Bui, Palyushinskogo i Teiblsona”, Tr. Mat. in-ta im. V. A. Steklova, 227, 1999, 286–298 | MR | Zbl

[12] Tribel Kh., Teoriya funktsionalnykh prostranstv, Mir, M., 1986 | MR | Zbl

[13] Khërmander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965 | MR

[14] Brezis H., Mironescu P., “Composition in fractional Sobolev spaces”, Discrete Contin. Dynam. Systems, 7:2 (2001), 241–246 | DOI | MR | Zbl

[15] Bui H.-Q., Paluszyński M., Taibleson M. H., “A maximal function characterization of weighted Besov–Lipschitz and Triebel–Lizorkin spaces”, Studia Math., 119:3 (1996), 219–246 | MR | Zbl

[16] Bui H.-Q., Paluszyński M., Taibleson M. H., “Characterization of the Besov–Lipschitz and Triebel–Lizorkin spaces. The case $q1$”, J. Fourier Anal. Appl., 3, Special Issue (1997), 837–846 | DOI | MR | Zbl

[17] Hedberg L. I. Netrusov Yu., An Axiomatic Approach to Function Spaces, Spectral Synthesis, and Luzin Approximation, Mem. Amer. Math. Soc., 188, no. 882, 2007 | MR

[18] Johnsen J., “Traces of Besov spaces revisited”, Z. Anal. Anwendungen, 19:3 (2000), 763–779 | MR | Zbl

[19] Maz'ya V., Mitrea M., Shaposhnikova T., “The Dirichlet problem in Lipschitz domains for higher order elliptic systems with rough coefficients”, J. d'Analyse Math., 110:1 (2010), 167–239 | DOI

[20] Maz'ya V. G., Shaposhnikova T. O., Theory of Sobolev Multipliers. With Applications to Differential and Integral Operators, Grundlehren der Mathematischen Wissenschaften, 337, Springer-Verlag, Berlin–Heidelberg, 2009 | MR

[21] Nečas J., Les Méthodes Directes en Théorie des Équations Elliptiques, Masson et Cie, Éditeurs, Paris; Academia, Éditeurs, Prague, 1967 | MR | Zbl

[22] Rychkov V. S., “On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains”, J. London Math. Soc. (2), 60:1 (1999), 237–257 | DOI | MR | Zbl

[23] Rychkov V. S., “Littlewood–Paley theory and function spaces with $A_p^\mathrm{loc}$ weights”, Math. Nachr., 224:1 (2001), 145–180 | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[24] Stein E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993 | MR | Zbl

[25] Triebel H., Theory of Function Spaces, v. II, Monographs in Mathematics, 84, Birkhäuser, Basel, etc., 1992 | MR | Zbl

[26] Triebel H., “Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers”, Rev. Mat. Complut., 15:2 (2002), 475–524 | MR | Zbl

[27] Triebel H., Theory of Function Spaces, v. III, Monographs in Mathematics, 100, Birkhäuser, Basel, etc., 2006 | MR | Zbl

[28] Vybiral J., Function spaces with dominating mixed smoothness, Dissertationes Math. (Rozprawy Mat.), 436, 2006 | MR | Zbl