A criterion for straightening a~Lipschitz surface in the Lizorkin--Triebel sense.~III
Matematičeskie trudy, Tome 13 (2010) no. 2, pp. 139-178
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain two new equivalent quasinorms for unweighted isotropic Besov and Lizorkin–Triebel spaces in the epigraph of a Lipschitz function. The question on the straightening is studied, i. e., the question on the existence of a diffeomorphism taking the epigraph into a halfspace which preserves the Lizorkin–Triebel spaces of the same indices. A criterion for the straightening is established in terms of dyadic weighted inequality where oscillations of a given function on stretched dyadic cubes are involved.
@article{MT_2010_13_2_a5,
author = {A. I. Parfenov},
title = {A criterion for straightening {a~Lipschitz} surface in the {Lizorkin--Triebel} {sense.~III}},
journal = {Matemati\v{c}eskie trudy},
pages = {139--178},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2010_13_2_a5/}
}
A. I. Parfenov. A criterion for straightening a~Lipschitz surface in the Lizorkin--Triebel sense.~III. Matematičeskie trudy, Tome 13 (2010) no. 2, pp. 139-178. http://geodesic.mathdoc.fr/item/MT_2010_13_2_a5/