On a~recurrence method for solving a~singularly perturbed Cauchy problem for a~second order equation
Matematičeskie trudy, Tome 13 (2010) no. 2, pp. 128-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, the method of deviating argument is applied to solving a singularly perturbed Cauchy problem for an ordinary differential equation of the second order with variable coefficients.
@article{MT_2010_13_2_a4,
     author = {T. Sh. Kal'menov and A. Sh. Shaldanbaev},
     title = {On a~recurrence method for solving a~singularly perturbed {Cauchy} problem for a~second order equation},
     journal = {Matemati\v{c}eskie trudy},
     pages = {128--138},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2010_13_2_a4/}
}
TY  - JOUR
AU  - T. Sh. Kal'menov
AU  - A. Sh. Shaldanbaev
TI  - On a~recurrence method for solving a~singularly perturbed Cauchy problem for a~second order equation
JO  - Matematičeskie trudy
PY  - 2010
SP  - 128
EP  - 138
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2010_13_2_a4/
LA  - ru
ID  - MT_2010_13_2_a4
ER  - 
%0 Journal Article
%A T. Sh. Kal'menov
%A A. Sh. Shaldanbaev
%T On a~recurrence method for solving a~singularly perturbed Cauchy problem for a~second order equation
%J Matematičeskie trudy
%D 2010
%P 128-138
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2010_13_2_a4/
%G ru
%F MT_2010_13_2_a4
T. Sh. Kal'menov; A. Sh. Shaldanbaev. On a~recurrence method for solving a~singularly perturbed Cauchy problem for a~second order equation. Matematičeskie trudy, Tome 13 (2010) no. 2, pp. 128-138. http://geodesic.mathdoc.fr/item/MT_2010_13_2_a4/

[1] Vasileva A. B., “Asimptotika reshenii nekotorykh zadach dlya obyknovennykh nelineinykh differentsialnykh uravnenii s malym parametrom pri starshei proizvodnoi”, Uspekhi mat. nauk, 18:3(111) (1963), 15–86 | MR | Zbl

[2] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi mat. nauk, 12:5 (1957), 3–122 | MR | Zbl

[3] Ilin A. M., “Pogranichnyi sloi”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 34, VINITI, M., 1988, 175–213 | MR | Zbl

[4] Lomov S. A., Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981 | MR